Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Quality Properties of Fermented Mugworts and Rapid Pattern Analysis of Their Volatile Flavor Components by Electric Nose Based On SAW (Surface Acoustic Wave) Sensor in GC System

The changes in quality properties and nutritional components in two fermented mugworts (Artemisia capillaries Thumberg, Artemisiaeasiaticae Nakai) were characterized followed by the rapid pattern analysis of volatile flavor compounds by Electric Nose based on SAW(Surface Acoustic Wave) sensor in GC system. There were remarkable decreases in the pH and small changes in the total soluble solids after fermentation. The L (lightness) and b (yellowness) values in Hunter's color system were shown to be decreased, whilst the a (redness) value was increased by fermentation. The HPLC analysis demonstrated that total amino acids were increased in quantity and the essential amino acids were contained higher in A. asiaticaeNakai than in A. capillaries Thumberg. While the total polyphenol contents were not affected by fermentation, the total sugar contents were dramatically decreased. Scopoletinwere highly abundant in A. capillarisThumberg, however, it was not detected in A. asiaticaeNakai. Volatile flavor compounds by Electric Nose showed that the intensity of several peaks were increased much and seven additional flavor peaks were newly produced after fermentation. The flavor differences of two mugworts were clearly distinguished from the image patterns of VaporPrintTM which indicate that the fermentation enables the two mugworts to have subtle flavor differences.

Patents as Indicators of Innovative Environment

The main problem is that there is a very low innovation performance in Latvia. Since Latvia is a Member State of European Union, it also shall have to fulfill the set targets and to improve innovative results.Universities are one of the main performers to provide innovative capacity of country. University, industry and government need to cooperate for getting best results.The intellectual property is one of the indicators to determine innovation level in the country or organization, and patents are one of the characteristics of intellectual property.The objective of the article is to determine indicators characterizing innovative environment in Latvia and influence of the development of universities on them.The methods that will be used in the article to achieve the objectives are quantitative and qualitative analysis of the literature, statistical data analysis and graphical analysis methods.

Optimal Controllers with Actuator Saturation for Nonlinear Structures

Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.

Design of Modular Robotic Joints for Achieving Various Robot Configurations

This paper describes various stages of design and prototyping of a modular robot for use in various industrial applications. The major goal of current research has been to design and make different robotic joints at low cost capable of being assembled together in any given order for achieving various robot configurations. Five different types of joins were designed and manufactured where extensive research has been carried out on the design of each joint in order to achieve optimal strength, size, modularity, and price. This paper presents various stages of research and development undertaken to engineer these joints that include material selection, manufacturing, and strength analysis. The outcome of this research addresses the birth of a new generation of modular industrial robots with a wider range of applications and greater efficiency.

Optimization of Communication Protocols by stochastic Delay Mechanisms

The paper is concerned with developing stochastic delay mechanisms for efficient multicast protocols and for smooth mobile handover processes which are capable of preserving a given Quality of Service (QoS). In both applications the participating entities (receiver nodes or subscribers) sample a stochastic timer and generate load after a random delay. In this way, the load on the networking resources is evenly distributed which helps to maintain QoS communication. The optimal timer distributions have been sought in different p.d.f. families (e.g. exponential, power law and radial basis function) and the optimal parameter have been found in a recursive manner. Detailed simulations have demonstrated the improvement in performance both in the case of multicast and mobile handover applications.

Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis

Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.

An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts

An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.

Optimal Measures in Production Developing an Universal Decision Supporter for Evaluating Measures in a Production

Due to the recovering global economy, enterprises are increasingly focusing on logistics. Investing in logistic measures for a production generates a large potential for achieving a good starting point within a competitive field. Unlike during the global economic crisis, enterprises are now challenged with investing available capital to maximize profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need an adequate model for logistically and monetarily evaluating measures in production. The Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems (IFA) developed a Logistic Information System which provides support in making decisions and is designed specifically for the forging industry. The aim of a project that has been applied for is to now transfer this process in order to develop a universal approach to logistically and monetarily evaluate measures in production.

Hippocampus Segmentation using a Local Prior Model on its Boundary

Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy.

The Impact of Subsequent Stock Market Liberalization on the Integration of Stock Markets in ASEAN-4 + South Korea

To strengthen the capital market, there is a need to integrate the capital markets within the region by removing legal or informal restriction, specifically, stock market liberalization. Thus the paper is to investigate the effects of the subsequent stock market liberalization on stock market integration in 4 ASEAN countries (Malaysia, Indonesia, Thailand, Singapore) and Korea from 1997 to 2007. The correlation between stock market liberalization and stock market integration are to be examined by analyzing the stock prices and returns within the region and in comparison with the world MSCI index. Event study method is to be used with windows of ±12 months and T-7 + T. The results show that the subsequent stock market liberalization generally, gives minor positive effects to stock returns, except for one or two countries. The subsequent liberalization also integrates the markets short-run and long-run.

Effect of Pectinase on the Physico-Chemical Properties of Juice from Pawpaw (Carica papaya) Fruits

A procedure for the preparation of clarified Pawpaw Juice was developed. About 750ml Pawpaw pulp was measured into 2 measuring cylinders A & B of capacity 1 litre heated to 400C, cooled to 200C. 30mls pectinase was added into cylinder A, while 30mls distilled water was added into cylinder B. Enzyme treated sample (A) was allowed to digest for 5hours after which it was heated to 900C for 15 minutes to inactivate the enzyme. The heated sample was cooled and with the aid of a mucillin cloth the pulp was filtered to obtain the clarified pawpaw juice. The juice was filled into 100ml plastic bottles, pasteurized at 950C for 45 minutes, cooled and stored at room temperature. The sample treated with 30mls distilled water also underwent the same process. Freshly pasteurized sample was analyzed for specific gravity, titratable acidity, pH, sugars and ascorbic acid. The remaining sample was then stored for 2 weeks and the above analyses repeated. There were differences in the results of the freshly pasteurized samples and stored sample in pH and ascorbic acid levels, also sample treated with pectinase yielded higher volumes of juice than that treated with distilled water.

The Role of Private Equity during Global Crises

The term private equity usually refers to any type of equity investment in an asset in which the equity is not freely tradable on a public stock market. Some researchers believe that private equity contributed to the extent of the crisis and increased the pace of its spread over the world. We do not agree with this. On the other hand, we argue that during the economic recession private equity might become an important source of funds for firms with special needs (e.g. for firms seeking buyout financing, venture capital, expansion capital or distress debt financing). However, over-regulation of private equity in both the European Union and the US can slow down this specific funding channel to the economy and deepen credit crunch during global crises.

Stability Issues on an Implemented All-Pass Filter Circuitry

The so-called all-pass filter circuits are commonly used in the field of signal processing, control and measurement. Being connected to capacitive loads, these circuits tend to loose their stability; therefore the elaborate analysis of their dynamic behavior is necessary. The compensation methods intending to increase the stability of such circuits are discussed in this paper, including the socalled lead-lag compensation technique being treated in detail. For the dynamic modeling, a two-port network model of the all-pass filter is being derived. The results of the model analysis show, that effective lead-lag compensation can be achieved, alone by the optimization of the circuit parameters; therefore the application of additional electric components are not needed to fulfill the stability requirement.

Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.

Development of UiTM Robotic Prosthetic Hand

The study of human hand morphology reveals that developing an artificial hand with the capabilities of human hand is an extremely challenging task. This paper presents the development of a robotic prosthetic hand focusing on the improvement of a tendon driven mechanism towards a biomimetic prosthetic hand. The design of this prosthesis hand is geared towards achieving high level of dexterity and anthropomorphism by means of a new hybrid mechanism that integrates a miniature motor driven actuation mechanism, a Shape Memory Alloy actuated mechanism and a passive mechanical linkage. The synergy of these actuators enables the flexion-extension movement at each of the finger joints within a limited size, shape and weight constraints. Tactile sensors are integrated on the finger tips and the finger phalanges area. This prosthesis hand is developed with an exact size ratio that mimics a biological hand. Its behavior resembles the human counterpart in terms of working envelope, speed and torque, and thus resembles both the key physical features and the grasping functionality of an adult hand.

Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features

Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.

Models to Customise Web Service Discovery Result using Static and Dynamic Parameters

This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.

Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Coastal Resource Management: Fishermen-s Perceptions of Seaweed Farming in Indonesia

Seaweed farming is emerging as a viable alternative activity in the Indonesian fisheries sector. This paper aims to investigate people-s perceptions of seaweed farming, to analyze its social and economic impacts and to identify the problems and obstacles hindering its continued development. Structured and semi-structured questionnaires were prepared to obtain qualitative data, and interviews were conducted with fishermen who also plant seaweed. The findings showed that fishermen in the Laikang Bay were enthusiastic about cultivating seaweeds and that seaweed plays a major role in supporting the household economy of fishermen. However, current seaweed drying technologies cannot support increased seaweed production on a farm or plot, especially in the rainy season. Additionally, variable monsoon seasons and long marketing channels are still major constraints on the development of the industry. Finally, capture fisheries, the primary economic livelihood of fishermen of older generations, is being slowly replaced by seaweed farming.