Knowledge Sharing based on Semantic Nets and Mereology to Avoid Risks in Manufacturing

The right information at the right time influences the enterprise and technical success. Sharing knowledge among members of a big organization may be a complex activity. And as long as the knowledge is not shared, can not be exploited by the organization. There are some mechanisms which can originate knowledge sharing. It is intended, in this paper, to trigger these mechanisms by using semantic nets. Moreover, the intersection and overlapping of terms and sub-terms, as well as their relationships will be described through the mereology science for the whole knowledge sharing system. It is proposed a knowledge system to supply to operators with the right information about a specific process and possible risks, e.g. at the assembly process, at the right time in an automated manufacturing environment, such as at the automotive industry.

Graphical Programming of Programmable Logic Controllers -Case Study for a Punching Machine-

The Programmable Logic Controller (PLC) plays a vital role in automation and process control. Grafcet is used for representing the control logic, and traditional programming languages are used for describing the pure algorithms. Grafcet is used for dividing the process to be automated in elementary sequences that can be easily implemented. Each sequence represent a step that has associated actions programmed using textual or graphical languages after case. The programming task is simplified by using a set of subroutines that are used in several steps. The paper presents an example of implementation for a punching machine for sheets and plates. The use the graphical languages the programming of a complex sequential process is a necessary solution. The state of Grafcet can be used for debugging and malfunction determination. The use of the method combined with a set of knowledge acquisition for process application reduces the downtime of the machine and improve the productivity.

Automated Ranking of Hints

The importance of hints in an intelligent tutoring system is well understood. The problems however related to their delivering are quite a few. In this paper we propose delivering of hints to be based on considering their usefulness. By this we mean that a hint is regarded as useful to a student if the student has succeeded to solve a problem after the hint was suggested to her/him. Methods from the theory of partial orderings are further applied facilitating an automated process of offering individualized advises on how to proceed in order to solve a particular problem.

Analysis of Effect of Pre-Logic Factoring on Cell Based Combinatorial Logic Synthesis

In this paper, an analysis is presented, which demonstrates the effect pre-logic factoring could have on an automated combinational logic synthesis process succeeding it. The impact of pre-logic factoring for some arbitrary combinatorial circuits synthesized within a FPGA based logic design environment has been analyzed previously. This paper explores a similar effect, but with the non-regenerative logic synthesized using elements of a commercial standard cell library. On an overall basis, the results obtained pertaining to the analysis on a variety of MCNC/IWLS combinational logic benchmark circuits indicate that pre-logic factoring has the potential to facilitate simultaneous power, delay and area optimized synthesis solutions in many cases.

Refinement of Object-Z Specifications Using Morgan-s Refinement Calculus

Morgan-s refinement calculus (MRC) is one of the well-known methods allowing the formality presented in the program specification to be continued all the way to code. On the other hand, Object-Z (OZ) is an extension of Z adding support for classes and objects. There are a number of methods for obtaining code from OZ specifications that can be categorized into refinement and animation methods. As far as we know, only one refinement method exists which refines OZ specifications into code. However, this method does not have fine-grained refinement rules and thus cannot be automated. On the other hand, existing animation methods do not present mapping rules formally and do not support the mapping of several important constructs of OZ, such as all cases of operation expressions and most of constructs in global paragraph. In this paper, with the aim of providing an automatic path from OZ specifications to code, we propose an approach to map OZ specifications into their counterparts in MRC in order to use fine-grained refinement rules of MRC. In this way, having counterparts of our specifications in MRC, we can refine them into code automatically using MRC tools such as RED. Other advantages of our work pertain to proposing mapping rules formally, supporting the mapping of all important constructs of Object-Z, and considering dynamic instantiation of objects while OZ itself does not cover this facility.

Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet

Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.

Elimination of Redundant Links in Web Pages– Mathematical Approach

With the enormous growth on the web, users get easily lost in the rich hyper structure. Thus developing user friendly and automated tools for providing relevant information without any redundant links to the users to cater to their needs is the primary task for the website owners. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent one that are likely to contain the outlying data such as noise, irrelevant and redundant data. This paper proposes new algorithm for mining the web content by detecting the redundant links from the web documents using set theoretical(classical mathematics) such as subset, union, intersection etc,. Then the redundant links is removed from the original web content to get the required information by the user..

Design, Development and Analysis of Automated Storage and Retrieval System with Single and Dual Command Dispatching using MATLAB

Automated material handling is given prime importance in the semi automated and automated facilities since it provides solution to the gigantic problems related to inventory and also support the latest philosophies like just in time production JIT and lean production. Automated storage and retrieval system is an antidote (if designed properly) to the facility sufferings like getting the right material , materials getting perished, long cycle times or many other similar kind of problems. A working model of automated storage and retrieval system (AS/RS) is designed and developed under the design parameters specified by Material Handling Industry of America (MHIA). Later on analysis was carried out to calculate the throughput and size of the machine. The possible implementation of this technology in local scenario is also discussed in this paper.

Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms

The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.

Baseline Performance of Notebook Computer under Various Environmental and Usage Conditions for Prognostics

A study was conducted to formally characterize notebook computer performance under various environmental and usage conditions. Software was developed to collect data from the operating system of the computer. An experiment was conducted to evaluate the performance parameters- variations, trends, and correlations, as well as the extreme value they can attain in various usage and environmental conditions. An automated software script was written to simulate user activity. The variability of each performance parameter was addressed by establishing the empirical relationship between performance parameters. These equations were presented as baseline estimates for performance parameters, which can be used to detect system deviations from normal operation and for prognostic assessment. The effect of environmental factors, including different power sources, ambient temperatures, humidity, and usage, on performance parameters of notebooks was studied.

Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution

This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.

Object Alignment for Military Optical Surveillance

Electro-optical devices are increasingly used for military sea-, land- and air applications to detect, recognize and track objects. Typically, these devices produce video information that is presented to an operator. However, with increasing availability of electro-optical devices the data volume is becoming very large, creating a rising need for automated analysis. In a military setting, this typically involves detecting and recognizing objects at a large distance, i.e. when they are difficult to distinguish from background and noise. One may consider combining multiple images from a video stream into a single enhanced image that provides more information for the operator. In this paper we investigate a simple algorithm to enhance simulated images from a military context and investigate how the enhancement is affected by various types of disturbance.

A Fuzzy Implementation for Optimization of Storage Locations in an Industrial AS/RS

Warehousing is commonly used in factories for the storage of products until delivery of orders. As the amount of products stored increases it becomes tedious to be carried out manually. In recent years, the manual storing has converted into fully or partially computer controlled systems, also known as Automated Storage and Retrieval Systems (AS/RS). This paper discusses an ASRS system, which was designed such that the best storage location for the products is determined by utilizing a fuzzy control system. The design maintains the records of the products to be/already in store and the storage/retrieval times along with the availability status of the storage locations. This paper discusses on the maintenance of the above mentioned records and the utilization of the concept of fuzzy logic in order to determine the optimum storage location for the products. The paper will further discuss on the dynamic splitting and merging of the storage locations depending on the product sizes.

Design Histories for Enhanced Concurrent Structural Design

The leisure boatbuilding industry has tight profit margins that demand that boats are created to a high quality but with low cost. This requirement means reduced design times combined with increased use of design for production can lead to large benefits. The evolutionary nature of the boatbuilding industry can lead to a large usage of previous vessels in new designs. With the increase in automated tools for concurrent engineering within structural design it is important that these tools can reuse this information while subsequently feeding this to designers. The ability to accurately gather this materials and parts data is also a key component to these tools. This paper therefore aims to develop an architecture made up of neural networks and databases to feed information effectively to the designers based on previous design experience.

A Security Analysis for Home Gateway Architectures

Providing Services at Home has become over the last few years a very dynamic and promising technological domain. It is likely to enable wide dissemination of secure and automated living environments. We propose a methodology for identifying threats to Services at Home Delivery systems, as well as a threat analysis of a multi-provider Home Gateway architecture. This methodology is based on a dichotomous positive/preventive study of the target system: it aims at identifying both what the system must do, and what it must not do. This approach completes existing methods with a synthetic view of potential security flaws, thus enabling suitable measures to be taken into account. Security implications of the evolution of a given system become easier to deal with. A prototype is built based on the conclusions of this analysis.

Biomass and Pigment Production by Monascus during Miniaturized Submerged Culture on Adlay

Three reactor types were explored and successfully used for pigment production by Monascus: shake flasks, and shaken and stirred miniaturized reactors. Also, the use of dielectric spectroscopy for the on-line measurement of biomass levels was explored. Shake flasks gave good pigment yields, but scale up is difficult, and they cannot be automated. Shaken bioreactors were less successful with pigment production than stirred reactors. Experiments with different impeller speeds in different volumes of liquid in the reactor confirmed that this is most likely due oxygen availability. The availability of oxygen appeared to affect biomass levels less than pigment production; red pigment production in particular needed very high oxygen levels. Dielectric spectroscopy was effectively used to continuously measure biomass levels during the submerged fungal fermentation in the shaken and stirred miniaturized bioreactors, despite the presence of the solid substrate particles. Also, the capacitance signal gave useful information about the viability of the cells in the culture.

An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies

A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.

Automated Separation of Organic Liquids through Their Boiling Points

This paper discuss the separation of the miscible liquids by means of fractional distillation. For complete separation of liquids, the process of heating, condensation, separation and storage is done automatically to achieve the objective. PIC micro-controller has been used to control each and every process of the work. The controller also controls the storage process by activating and deactivating the conveyors. The liquids are heated which on reaching their respective boiling points evaporate and enter the condensation chamber where they convert into liquid. The liquids are then directed to their respective tanks by means of stepper motor which moves in three directions, each movement into different tank. The tank on filling sends the signal to controller which then opens the solenoid valves. The tank is emptied into the beakers below the nozzle. As the beaker filled, the nozzle closes and the conveyors come into operation. The filled beaker is replaced by an empty beaker from behind. The work can be used in oil industries, chemical industries and paint industries.

Rigorous Electromagnetic Model of Fourier Transform Infrared (FT-IR) Spectroscopic Imaging Applied to Automated Histology of Prostate Tissue Specimens

Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that provides both chemically and spatially resolved information. The rich chemical content of data may be utilized for computer-aided determinations of structure and pathologic state (cancer diagnosis) in histological tissue sections for prostate cancer. FT-IR spectroscopic imaging of prostate tissue has shown that tissue type (histological) classification can be performed to a high degree of accuracy [1] and cancer diagnosis can be performed with an accuracy of about 80% [2] on a microscopic (≈ 6μm) length scale. In performing these analyses, it has been observed that there is large variability (more than 60%) between spectra from different points on tissue that is expected to consist of the same essential chemical constituents. Spectra at the edges of tissues are characteristically and consistently different from chemically similar tissue in the middle of the same sample. Here, we explain these differences using a rigorous electromagnetic model for light-sample interaction. Spectra from FT-IR spectroscopic imaging of chemically heterogeneous samples are different from bulk spectra of individual chemical constituents of the sample. This is because spectra not only depend on chemistry, but also on the shape of the sample. Using coupled wave analysis, we characterize and quantify the nature of spectral distortions at the edges of tissues. Furthermore, we present a method of performing histological classification of tissue samples. Since the mid-infrared spectrum is typically assumed to be a quantitative measure of chemical composition, classification results can vary widely due to spectral distortions. However, we demonstrate that the selection of localized metrics based on chemical information can make our data robust to the spectral distortions caused by scattering at the tissue boundary.

Automated Knowledge Engineering

This article outlines conceptualization and implementation of an intelligent system capable of extracting knowledge from databases. Use of hybridized features of both the Rough and Fuzzy Set theory render the developed system flexibility in dealing with discreet as well as continuous datasets. A raw data set provided to the system, is initially transformed in a computer legible format followed by pruning of the data set. The refined data set is then processed through various Rough Set operators which enable discovery of parameter relationships and interdependencies. The discovered knowledge is automatically transformed into a rule base expressed in Fuzzy terms. Two exemplary cancer repository datasets (for Breast and Lung Cancer) have been used to test and implement the proposed framework.