Investigation of Regional Differences in Strong Ground Motions for the Iranian Plateau

Regional variations in strong ground motions for the Iranian Plateau have been investigated by using a simple statistical method called Analysis of Variance (ANOVA). In this respect, a large database consisting of 1157 records occurring within the Iranian Plateau with moment magnitudes of greater than or equal to 5 and Joyner-Boore distances up to 200 km has been considered. Geometric averages of horizontal peak ground accelerations (PGA) as well as 5% damped linear elastic response spectral accelerations (SA) at periods of 0.2, 0.5, 1.0, and 2.0 sec are used as strong motion parameters. The initial database is divided into two different datasets, for Northern Iran (NI) and Central and Southern Iran (CSI). The comparison between strong ground motions of these two regions reveals that there is no evidence for significant differences; therefore, data from these two regions may be combined to estimate the unknown coefficients of attenuation relationships.

Analysis of Cascade Control Structure in Train Dynamic Braking System

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production

The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.

A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking

Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.

Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System

Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.

Encouraging the Development of Scientific Literacy in Early Childhood Institutions: Croatian Experience

There is a widespread belief in everyday discourse that science subjects (physics, chemistry and biology) are, along with math, the most difficult school subjects in the education of an individual. This assumption is usually justified by the following facts: low GPA in these subjects, the number of pupils who fail these subjects is high in comparison to other subjects, and the number of pupils interested in continuing their studies in the fields with a focus on science subjects is lower compared to non-science-oriented fields. From that perspective, the project: “Could it be different? How do children explore it?” becomes extremely interesting because it is focused on young children and on the introduction of new methods, with aim of arousing interest in scientific literacy development in 10 kindergartens by applying the methodology of an action research, with an ethnographic approach. We define scientific literacy as a process of encouraging and nurturing the research and explorative spirit in children, as well as their natural potential and abilities that represent an object of scientific research: to learn about exploration by conducting exploration. Upon project completion, an evaluation questionnaire was created for the parents of the children who had participated in the project, as well as for those whose children had not been involved in the project. The purpose of the first questionnaire was to examine the level of satisfaction with the project implementation and its outcomes among those parents whose children had been involved in the project (N=142), while the aim of the second questionnaire was to find out how much the parents of the children not involved (N=154) in this activity were interested in this topic.

Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Analytical Study of Applying the Account Aggregation Approach in E-Banking Services

The advanced information technology is becoming an important factor in the development of financial services industry, especially the banking industry. It has introduced new ways of delivering banking to the customer, such as Internet Banking. Banks began to look at electronic banking (e-banking) as a means to replace some of their traditional branch functions using the Internet as a new distribution channel. Some consumers have at least more than one account, and across banks, and access these accounts using e-banking services. To look at the current net worth position, customers have to login to each of their accounts and get the details and work on consolidation. This not only takes ample time but it is a repetitive activity at a specified frequency. To address this point, an account aggregation concept is added as a solution. E-banking account aggregation, as one of the e-banking types, appeared to build a stronger relationship with customers. Account Aggregation Service generally refers to a service that allows customers to manage their bank accounts maintained in different institutions through a common Internet banking operating a platform, with a high concern to security and privacy. This paper presents an overview of an e-banking account aggregation approach as a new service in the e-banking field.

Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Directivity and Gain Improvement for Microstrip Array Antenna with Directors

Methodology is suggested to design a linear rectangular microstrip array antenna based on Yagi antenna theory. The antenna with different directors' lengths as parasitic elements were designed, simulated, and analyzed using HFSS. The calculus and results illustrate the effectiveness of using specific parasitic elements to improve the directivity and gain for microstrip array antenna. The results have shown that the suggested methodology has the potential to be applied for improving the antenna performance. Maximum radiation intensity (Umax) of the order of 0.47w/st was recorded, directivity of 6.58dB, and gain better than 6.07dB are readily achievable for the antenna that working.

Bridging the Gap: Living Machine in Educational Nature Preserve Center

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Comparative Analysis of Soil Enzyme Activities between Laurel-Leaved and Cryptomeria japonica Forests

Soil enzyme activities in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined to determine levels of mineralization and metabolism. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and Pw) trees for analysis. Cellulase, β-xylosidase, and protease activities were higher in BB-1 samples those in BB-2 samples. These activity levels corresponded to the distribution of cellulose and hemicellulose in the soil horizons. Cellulase, β-xylosidase, and chymotrypsin activities were higher in soil from the Pw forest than in that from the BB-2 forest. The relationships between the soil enzymes calculated by Spearman’s rank correlation indicate that the interactions between enzymes in BB-2 samples were more complex than those in Pw samples.

The Impact of Character Strengths on Employee Well-Being: The Mediating Effect of Work-Family Relationship

For organizational development, employee well-being is critical and has been influenced deeply by character strengths. Therefore, investigating the relationship between character strengths and employee well-being and its inner mechanism is crucial. In this study, we explored the features of Chinese employees' character strengths, studied the relationship between character strengths and employees' subjective well-being, work well-being and psychological well-being respectively, and examined the mediating effect of work-family relationship (both enrichment and conflict). An online survey was conducted. The results showed that: (1) The top five character strengths of Chinese employees were gratitude, citizenship, kindness, appreciation of beauty and excellence, justice, while the bottom five ones were creativity, authenticity, bravery, spirituality, open-mindedness. (2) Subjective well-being was significantly correlated to courage, humanity, transcendence and justice. Work well-being was significantly correlated to wisdom, courage, humanity, justice and transcendence. Psychological well-being was significantly correlated to all the above five character strengths and temperance. (3) Wisdom and humanity influenced Chinese employees’ subjective well-being through work-family enrichment. Justice enhanced psychological well-being via work-family enrichment; meanwhile, it also played a positive role in subjective well-being, work well-being, and psychological well-being by decreasing the family-work conflict. At the end of this paper, some theoretical and practical contributions to organizational management were further discussed.

A Study on Holosen-Pleistosen Sedimentology of Morphotectonic Structure and Seismicity of Gökova Bay

In this research which has been prepared to show the relationship between Gökova Bay’s morphotectonic structure and seismicity, it is clear that there are many active faults in the region. The existence of a thick sedimentary accumulation since Late Quaternary times is obvious as a result of the geophysical workings in the region and the interpretation of seismic data which has been planning to be taken from the Bay. In the regions which have been tectonically active according to the interpretation of the taken data, the existence of the successive earthquakes in the last few years is remarkable. By analyzing large earthquakes affecting the areas remaining inside the sediments in West Anatolian Collapse System, this paper aims to reveal the fault systems constituting earthquakes with the information obtained from this study and to determine seismicity of the present residential areas right next to them. It is also aimed to anticipate the measures to be taken against possible earthquake hazards, to identify these areas posing a risk in terms of residential and urban planning and to determine at least partly the characteristics of the basin.

Identification of Lean Implementation Hurdles in Indian Industries

Due to increased pressure from global competitors, manufacturing organizations are switching over to lean philosophies from traditional mass production. Lean manufacturing is a manufacturing philosophy which focuses on elimination of various types of wastes and creates maximum value for the end customers. Lean thinking aims to produce high quality products and services at the lowest possible cost with maximum customer responsiveness. Indian Industry is facing lot of problems in this transformation from traditional mass production to lean production. Through this paper an attempt has been made to identify various lean implementation hurdles in Indian industries with the help of a structured survey. Identified hurdles are grouped with the help of factor analysis and rated by calculating descriptive statistics. To show the effect of lean implementation hurdles a hypothesis “Organizations having higher level of lean implementation hurdles will have poor (negative) performance” has been postulated and tested using correlation matrix between performance parameters of the organizations and identified hurdles. The findings of the paper will be helpful to prepare road map to identify and eradicate the lean implementation hurdles.

Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions

Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.

A Practical Methodology for Evaluating Water, Sanitation and Hygiene Education and Training Programs

Many organizations in the Water, Sanitation and Hygiene (WASH) sector provide education and training in order to increase the effectiveness of their WASH interventions. A key challenge for these organizations is measuring how well their education and training activities contribute to WASH improvements. It is crucial for implementers to understand the returns of their education and training activities so that they can improve and make better progress toward the desired outcomes. This paper presents information on CAWST’s development and piloting of the evaluation methodology. The Centre for Affordable Water and Sanitation Technology (CAWST) has developed a methodology for evaluating education and training activities, so that organizations can understand the effectiveness of their WASH activities and improve accordingly. CAWST developed this methodology through a series of research partnerships, followed by staged field pilots in Nepal, Peru, Ethiopia and Haiti. During the research partnerships, CAWST collaborated with universities in the UK and Canada to: review a range of available evaluation frameworks, investigate existing practices for evaluating education activities, and develop a draft methodology for evaluating education programs. The draft methodology was then piloted in three separate studies to evaluate CAWST’s, and CAWST’s partner’s, WASH education programs. Each of the pilot studies evaluated education programs in different locations, with different objectives, and at different times within the project cycles. The evaluations in Nepal and Peru were conducted in 2013 and investigated the outcomes and impacts of CAWST’s WASH education services in those countries over the past 5-10 years. In 2014, the methodology was applied to complete a rigorous evaluation of a 3-day WASH Awareness training program in Ethiopia, one year after the training had occurred. In 2015, the methodology was applied in Haiti to complete a rapid assessment of a Community Health Promotion program, which informed the development of an improved training program. After each pilot evaluation, the methodology was reviewed and improvements were made. A key concept within the methodology is that in order for training activities to lead to improved WASH practices at the community level, it is not enough for participants to acquire new knowledge and skills; they must also apply the new skills and influence the behavior of others following the training. The steps of the methodology include: development of a Theory of Change for the education program, application of the Kirkpatrick model to develop indicators, development of data collection tools, data collection, data analysis and interpretation, and use of the findings for improvement. The methodology was applied in different ways for each pilot and was found to be practical to apply and adapt to meet the needs of each case. It was useful in gathering specific information on the outcomes of the education and training activities, and in developing recommendations for program improvement. Based on the results of the pilot studies, CAWST is developing a set of support materials to enable other WASH implementers to apply the methodology. By using this methodology, more WASH organizations will be able to understand the outcomes and impacts of their training activities, leading to higher quality education programs and improved WASH outcomes.

Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene

In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.