Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

Tikhonov regularization and reproducing kernels are the
most popular approaches to solve ill-posed problems in computational
mathematics and applications. And the Fourier multiplier operators
are an essential tool to extend some known linear transforms
in Euclidean Fourier analysis, as: Weierstrass transform, Poisson
integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean
operators, partial Fourier integral, Riesz potential, Bessel potential,
etc. Using the theory of reproducing kernels, we construct a simple
and efficient representations for some class of Fourier multiplier
operators Tm on the Paley-Wiener space Hh. In addition, we give
an error estimate formula for the approximation and obtain some
convergence results as the parameters and the independent variables
approaches zero. Furthermore, using numerical quadrature integration
rules to compute single and multiple integrals, we give numerical
examples and we write explicitly the extremal function and the
corresponding Fourier multiplier operators.




References:
[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc.
1948, (68):337–404.
[2] T. Matsuura, S. Saitoh and D.D. Trong, Inversion formulas in heat
conduction multidimensional spaces, J. Inv. Ill-posed Problems 2005,
(13):479–493.
[3] T. Matsuura and S. Saitoh, Analytical and numerical inversion formulas in
the Gaussian convolution by using the Paley-Wiener spaces, Appl. Anal.
2006, (85):901–915.
[4] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc.
Amer. Math. Soc. 1983,89:74–78.
[5] S. Saitoh, The Weierstrass transform and an isometry in the heat equation,
Appl. Anal. 1983, (16):1–6.
[6] S. Saitoh, Approximate real inversion formulas of the Gaussian
convolution, Appl. Anal. 2004, (83):727–733.
[7] S. Saitoh, Best approximation, Tikhonov regularization and reproducing
kernels, Kodai Math. J. 28 (2005) 359–367.
[8] F. Soltani, Littlewood-Paley g-function in the Dunkl analysis on Rd, J.
Inequal. Pure Appl. Math. 2005.
[9] F. Soltani, Inversion formulas in the Dunkl-type heat conduction on Rd,
Appl. Anal. 2005, (84):541–553.
[10] F. Soltani, Best approximation formulas for the Dunkl L2-multiplier
operators on Rd, Rocky Mountain J. Math. 2012, (42):305–328.
[11] F. Soltani, Multiplier operators and extremal functions related to the
dual Dunkl-Sonine operator, Acta Math. Sci. 2013, 33B(2):430–442.
[12] F. Soltani, Operators and Tikhonov regularization on the Fock space,
Int. Trans. Spec. Funct. 2014, 25(4):283–294.
[13] F. Soltani and A. Nemri, Analytical and numerical approximation
formulas for the Fourier multiplier operators, Complex Anal. Oper.
Theory, 2015, 9(1):121–138.
[14] F. Soltani and A. Nemri, Analytical and numerical applications
for the Fourier multiplier operators on Rn × (0,∞), Appl. Anal.
http://dx.doi.org/10.1080/00036811.2014.937432.
[15] M. Yamada, T. Matsuura and S. Saitoh, Representations of inverse
functions by the integral transform with the sign kernel, Frac. Calc. Appl.
Anal. 2007, (2):161–168.