Characterization of Cement Mortar Based on Fine Quartz

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana

Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.

The Incidence of Obesity among Adult Women in Pekanbaru City, Indonesia, Related to High Fat Consumption, Stress Level, and Physical Activity

Background: Obesity has been recognized as a global health problem. Individuals classified as overweight and obese are increasing at an alarming rate. This condition is associated with psychological and physiological problems. as a person reaches adulthood, somatic growth ceases. At this stage, the human body has developed fully, to a stable state. As the capital of Riau Province in Indonesia, Pekanbaru is dominated by Malay ethnic population habitually consuming cholesterol-rich fatty foods as a daily menu, a trigger to the onset of obesity resulting in high prevalence of degenerative diseases. Research objectives: The aim of this study is elaborating the relationship between high-fat consumption pattern, stress level, physical activity and the incidence of obesity in adult women in Pekanbaru city. Research Methods: Among the combined research methods applied in this study, the first stage is quantitative observational, analytical cross-sectional research design with adult women aged 20-40 living in Pekanbaru city. The sample consists of 200 women with BMI≥25. Sample data is processed with univariate, bivariate (correlation and simple linear regression) and multivariate (multiple linear regression) analysis. The second phase is qualitative descriptive study purposive sampling by in-depth interviews. six participants withdrew from the study. Results: According to the results of the bivariate analysis, there are relationships between the incidence of obesity and the pattern of high fat foods consumption (energy intake (p≤0.000; r = 0.536), protein intake (p≤0.000; r=0.307), fat intake (p≤0.000; r=0.416), carbohydrate intake (p≤0.000; r=0.430), frequency of fatty food consumption (p≤0.000; r=0.506) and frequency of viscera foods consumption (p≤0.000; r=0.535). There is a relationship between physical activity and incidence of obesity (p≤0.000; r=-0.631). However, there is no relationship between the level of stress (p=0.741; r=0.019-) and the incidence of obesity. Physical activity is a predominant factor in the incidence of obesity in adult women in Pekanbaru city. Conclusion: There are relationships between high-fat food consumption pattern, physical activity and the incidence of obesity in Pekanbaru city whereas physical activity is a predominant factor in the occurrence of obesity, supported by the unchangeable pattern of high-fat foods consumption.

Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands

The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.

A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State

Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies.

Aiming at Optimization of Tracking Technology through Seasonally Tilted Sun Trackers: An Indian Perspective

Discussions on concepts of Single Axis Tracker (SAT) are becoming more and more apt for developing countries like India not just as an advancement in racking technology but due to the utmost necessity of reaching at the lowest Levelized Cost of Energy (LCOE) targets. With this increasing competition and significant fall in feed-in tariffs of solar PV projects, developers are under constant pressure to secure investment for their projects and eventually earn profits from them. Moreover, being the second largest populated country, India suffers from scarcity of land because of higher average population density. So, to mitigate the risk of this dual edged sword with reducing trend of unit (kWh) cost at one side and utilization of land on the other, tracking evolved as the call of the hour. Therefore, the prime objectives of this paper are not only to showcase how STT proves to be an effective mechanism to get more gain in Global Incidence in collector plane (Ginc) with respect to traditional mounting systems but also to introduce Seasonally Tilted Tracker (STT) technology as a possible option for high latitude locations.

A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages

Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.

Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants

In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.

Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University

Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performance

A Retrospective Study of Vaginal Stenosis Following Treatment of Cervical Cancers and the Effectiveness of Rehabilitation Interventions

Vaginal stenosis is a common side effect associated with pelvic radiotherapy in cervical cancer patients which contributes negatively to woman’s health and prevents adequate vaginal/cervical examination. Vaginal dilation with a dilator is routine practice and is internationally advocated as a prophylactic measure to preserve vaginal patency. This retrospective study was carried out with the aim to know the usefulness of vaginal dilation following pelvic radiation therapy in cervical cancer patients in India. Data from medical records of 183 cervical cancer patients, which met the study criteria, were collected related to the stage of the disease, treatment received, commencement period of dilation post radiation therapy, sexual status and side effects associated to dilation practice. Data related to vaginal dimensions as per the length of insertion of a small, medium and large dilator were collected on regular follow-ups until 36 months and/or more. Vaginal dimensions as measured with the length of medium dilator insertion were used for analysis of dilation therapy results using paired t-test. Patients who underwent vaginal dilation with dilator maintained vaginal patency, also the mean vaginal length significantly increased, from 8.02 cm ± 2.69 to 9.96 ± 2.89 cm with a p value

Adverse Drug Reactions Monitoring in the Northern Region of Zambia

The Copperbelt University Health Services (CBUHS) was designated by the Zambia Medicines Regulatory Authority (ZAMRA), formally the Pharmaceutical Regulatory Authority (PRA) as a regional pharmacovigilance centre to carryout activities of drug safety monitoring in four provinces in Zambia. CBUHS’s mandate included stimulating the reporting of adverse drug reactions (ADRs), as well as collecting and collating ADR reports from health institutions in the four provinces. This report covers the researchers’ experiences from May 2008 to September, 2016. The main objectives are 1) to monitor ADRs in the Zambian population, 2) to disseminate information to all health professionals in the region advising that the CBU health was a centre for reporting ADRs in the region, 3) to monitor polypharmacy as well as the benefit-risk profile of medicines, 4) to generate independent, evidence based recommendations on the safety of medicines, 5) to support ZAMRA in formulating safety related regulatory decisions for medicines, and 6) to communicate findings with all key stakeholders. The methodology involved monthly visits, beginning in early May 2008 to September, 2016, by the CBUHS to health institutions in the programme areas. Activities included holding discussions with health workers, distribution of ADR forms and collection of ADRs reports. These reports, once collected, were documented and assessed at the CBUHS. A report was then prepared for ZAMRA on quarterly basis. At ZAMRA, serious ADRs were noted and recommendations made to the Ministry of Health of the Republic of Zambia. The results show that 2,600 ADRs reports were received at the pharmacovigilance regional centre. Most of the ADRs reports that received were due to antiretroviral drugs, as well as a few from anti-malarial drugs like Artemether/Lumefantrine – Coartem®. Three hundred and twelve ADRs were entered in the Uppsala Monitoring Centre WHO Vigiflow for further analysis. It was concluded that in general, 2008-16 were exciting years for the pharmacovigilance group at CBUHS. From a very tentative beginning, a lot of strides were made and contacts established with healthcare facilities in the region. The researchers were encouraged by the support received from the Copperbelt University management, the motivation provided by ZAMRA and most importantly the enthusiasm of health workers in all the health care facilities visited. As a centre for drug safety in Zambia, the results show it achieves its objectives for monitoring ADRs, Pharmacovigilance (drug safety monitoring), and activities of monitoring ADRs as well as preventing them. However, the centre faces critical challenges caused by erratic funding that prevents the smooth running of the programme.

Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Rail Corridors between Minimal Use of Train and Unsystematic Tightening of Population: A Methodological Essay

In the current situation, the automobile has become the main means of locomotion. It allows traveling long distances, encouraging urban sprawl. To counteract this trend, the train is often proposed as an alternative to the car. Simultaneously, the favoring of urban development around public transport nodes such as railway stations is one of the main issues of the coordination between urban planning and transportation and the keystone of the sustainable urban development implementation. In this context, this paper focuses on the study of the spatial structuring dynamics around the railway. Specifically, it is a question of studying the demographic dynamics in rail corridors of Nantes, Angers and Le Mans (Western France) basing on the radiation of railway stations. Consequently, the methodology is concentrated on the knowledge of demographic weight and gains of these corridors, the index of urban intensity and the mobility behaviors (workers’ travels, scholars' travels, modal practices of travels). The perimeter considered to define the rail corridors includes the communes of urban area which have a railway station and communes with an access time to the railway station is less than fifteen minutes by car (time specified by the Regional Transport Scheme of Travelers). The main tools used are the statistical data from the census of population, the basis of detailed tables and databases on mobility flows. The study reveals that the population is not tightened along rail corridors and train use is minimal despite the presence of a nearby railway station. These results lead to propose guidelines to make the train, a real vector of mobility across the rail corridors.