A Content Vector Model for Text Classification

As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and naïve Bayes algorithms.

Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments

Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.

Antioxidants Reveal Protection against the Biochemical Changes in Liver, Kidney and Blood Profiles after Clindamycin / Ibuprofen Administration in Dental Patients

The adverse effects of Clindamycin (Clind.) / Ibuprofen (Ibu.) combination on liver, kidney, blood elements and the significances of antioxidants (N-acetylcysteine and Zinc) against these effects were evaluated. The study includes: Group I; control n=30, Group II; patients on Clind.300mg/Ibu.400mg twice daily for a week n=30, Group III; patients on Clind.300mg/Ibu.400mg+Nacetylcysteine 200mg twice daily for a week n=15 and Group IV; patients on Clind.300mg/Ibu.400mg+Zinc50mg twice daily for a week n=15. Serum malondialdehyde (MDA), alanine transferase (ALT), aspartate transferase (AST), γ glutamyl transferase (GGT), creatinine, blood urea nitrogen (BUN) were measured. Applying one way ANOVA followed by Tuckey Kramer post test, Group II showed significant increase in ALT, AST, GGT, BUN and decrease in Hb, RBCs, platelets than Group I. Group III showed significant decrease in ALT, AST, GGT, BUN than Group II. Moreover, Group IV showed significant decrease in ALT, AST, GGT and increase in Hb, RBCs, and platelets than Group II. Conclusively, Adding Zinc or Nacetylcysteine buffer the oxidative stress and improve the therapeutic outcome of Clindamycin/Ibuprofen combination.

Experimental Study of Frequency Behavior for a Circular Cylinder behind an Airfoil

The interaction between wakes of bluff body and airfoil have profound influences on system performance in many industrial applications, e.g., turbo-machinery and cooling fan. The present work investigates the effect of configuration include; airfoil-s angle of attack, transverse and inline spacing of the models, on frequency behavior of the cylinder-s near-wake. The experiments carried on under subcritical flow regime, using the hot-wire anemometry (HWA). The relationship between the Strouhal numbers and arrangements provide an insight into the global physical processes of wake interaction and vortex shedding.

Design Process and Real-Time Validation of an Innovative Autonomous Mid-Air Flight and Landing System

This paper describes the design process and the realtime validation of an innovative autonomous mid-air flight and landing system developed by the Italian Aerospace Research Center in the framework of the Italian national funded project TECVOL (Technologies for the Autonomous Flight). In the paper it is provided an insight of the whole development process of the system under study. In particular, the project framework is illustrated at first, then the functional context and the adopted design and testing approach are described, and finally the on-ground validation test rig on purpose designed is addressed in details. Furthermore, the hardwarein- the-loop validation of the autonomous mid-air flight and landing system by means of the real-time test rig is described and discussed.

Improving Cache Memory Utilization

In this paper, an efficient technique is proposed to manage the cache memory. The proposed technique introduces some modifications on the well-known set associative mapping technique. This modification requires a little alteration in the structure of the cache memory and on the way by which it can be referenced. The proposed alteration leads to increase the set size virtually and consequently to improve the performance and the utilization of the cache memory. The current mapping techniques have accomplished good results. In fact, there are still different cases in which cache memory lines are left empty and not used, whereas two or more processes overwrite the lines of each other, instead of using those empty lines. The proposed algorithm aims at finding an efficient way to deal with such problem.

Daily and Seasonal Changes of Air Pollution in Kuwait

This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.

Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of a Digital-Noiseless, Ultra-High-Speed Image Sensor

Since 2004, we have been developing an in-situ storage image sensor (ISIS) that captures more than 100 consecutive images at a frame rate of 10 Mfps with ultra-high sensitivity as well as the video camera for use with this ISIS. Currently, basic research is continuing in an attempt to increase the frame rate up to 100 Mfps and above. In order to suppress electro-magnetic noise at such high frequency, a digital-noiseless imaging transfer scheme has been developed utilizing solely sinusoidal driving voltages. This paper presents highly efficient-yet-accurate expressions to estimate attenuation as well as phase delay of driving voltages through RC networks of an ultra-high-speed image sensor. Elmore metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE data, we found a simple expression that significantly improves the accuracy of the approximation. Similarly, another simple closed-form model to estimate phase delay through fundamental RC networks is also obtained. Estimation error of both expressions is much less than previous works, only less 2% for most of the cases . The framework of this analysis can be extended to address similar issues of other VLSI structures.

Performance Enhancement Employing Vertical Beamforming for FFR Technique

This paper proposes a vertical beamforming concept to a cellular network employing Fractional Frequency Reuse technique including with cell sectorization. Two different beams are utilized in cell-center and cell-edge, separately. The proposed concept is validated through computer simulation in term of SINR and channel capacity. Also, comparison when utilizing horizontal and vertical beam formation is in focus. The obtained results indicate that the proposed concept can improve the performance of the cellular networks comparing with the one using horizontal beamforming.

Local Algorithm for Establishing a Virtual Backbone in 3D Ad Hoc Network

Due to the limited lifetime of the nodes in ad hoc and sensor networks, energy efficiency needs to be an important design consideration in any routing algorithm. It is known that by employing a virtual backbone in a wireless network, the efficiency of any routing scheme for the network can be improved. One common design for routing protocols in mobile ad hoc networks is to use positioning information; we use the node-s geometric locations to introduce an algorithm that can construct the virtual backbone structure locally in 3D environment. The algorithm construction has a constant time.

Growth and Stomatal Responses of Bread Wheat Genotypes in Tolerance to Salt Stress

Plant growth is affected by the osmotic stress as well as toxicity of salt in leaves. In order to study of salt stress effects on stomatal conductance and growth rate and relationship between them as wells osmotic and Na+-specific effects on these traits, four bread wheat genotypes differing in salt tolerance were selected. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+) concentrations in flag leaf blade at 3 salinity levels (0, 100 and 200 mM NaCl) were measured. Salt-tolerant genotypes showed higher stomatal conductance and growth rate compared to salt-sensitive ones. After 10 and 20 days exposure to salt, stomatal conductance and relative growth rate were reduced, but the reduction was greater in sensitive genotypes. Growth rate was reduced severely in the first period (1-10 days) of salt commencements and it was due to osmotic effect of salt not Na+ toxicity. In the second period (11-20 days) after salt treatment growth reduced only when salt accumulated to toxic concentrations in the leaves. A positive relationship between stomatal conductance and relative growth rate showed that stomatal conductance can be a reliable indicator of growth rate, and finally can be considered as a sensitive indicator of the osmotic stress. It seems 20 days after salinity, the major effect of salt, especially at low to moderate salinity levels on growth properties was due to the osmotic effect of salt, not to Na+-specific effects within the plant.

Applying Similarity Theory and Hilbert Huang Transform for Estimating the Differences of Pig-s Blood Pressure Signals between Situations of Intestinal Artery Blocking and Unblocking

A mammal-s body can be seen as a blood vessel with complex tunnels. When heart pumps blood periodically, blood runs through blood vessels and rebounds from walls of blood vessels. Blood pressure signals can be measured with complex but periodic patterns. When an artery is clamped during a surgical operation, the spectrum of blood pressure signals will be different from that of normal situation. In this investigation, intestinal artery clamping operations were conducted to a pig for simulating the situation of intestinal blocking during a surgical operation. Similarity theory is a convenient and easy tool to prove that patterns of blood pressure signals of intestinal artery blocking and unblocking are surely different. And, the algorithm of Hilbert Huang Transform can be applied to extract the character parameters of blood pressure pattern. In conclusion, the patterns of blood pressure signals of two different situations, intestinal artery blocking and unblocking, can be distinguished by these character parameters defined in this paper.

Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

The Adsorption of Lead from Aqueous Solutions Using Coal Fly Ash : Effect of Crystallinity

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, like quartz and mullite. In this study, the effect of CFA crystallinity toward lead adsorption capacity was investigated. To get solid with various crystallinity, the solution of sodium hydroxide (NaOH) of 1-7 M was used to treat CFA at various temperature and reflux time. Furthermore, to evaluate the effect of NaOH-treated CFA with respect to adsorption capacity, the treated CFA were examine as adsorbent for removing lead in the solution. The result shows that using NaOH to treat CFA causes crystallinity of quartz and mullite decrease. At higher NaOH concentration (>3M), in addition the damage of quartz and mullite crystallinity is followed by crystal formation called hydroxysodalite. The lower crystalllinity, the higher adsorption capacity.

Firm Performance of Thai Cuisines in Bangkok, Thailand: Contribution to the Tourism Industry

This study is a descriptive-normative research. It attempted to investigate the restaurants’ firm performance in terms of the customers and restaurant personnel’s degree of satisfaction. A total of 12 restaurants in Bangkok, Thailand that offer Thai cuisine were included in this study. It involved 24 stockholders/managers, 120 subordinates and 360 customers. General Managers and restaurants’ stockholders, 10 staffs, and 30 costumers for each restaurant were chosen for random sampling. This study found that respondents are slightly satisfied with their work environment but are generally satisfied with the accessibility to transportation, to malls, convenience, safety, recreation, noise-free, and attraction; customers find the Quality of Food in most Thai Cuisines like services, prices of food, sales promotion, and capital and length of service satisfactory. Therefore, both stockholder-related and personnel-related factors which are influenced by restaurant, personnel, and customer-related factors are partially accepted whereas; customer-related factors which are influenced by restaurant, personnel and customer-related factors are rejected.

Determination of Geometric Dimensions of a Double Sided Linear Switched Reluctance Motor

In this study, a double-sided linear switched reluctance motor (LSRM) drive was investigated as an alternative actuator for vertical linear transportation applications such as a linear elevator door, hospital and subway doors which move linearly and where accurate position control and rapid response is requested. A prototype sliding elevator door that is focused on a home elevator with LSRMs is designed. The motor has 6/4 poles, 3 phases, 8A, 24V, 250 W and 250 N pull forces. Air gap between rotor and translator poles of the designed motor and phase coil-s ideal inductance profile are obtained in compliance with the geometric dimensions. Operation and switching sections as motor and generator has been determined from the inductance profile.

Dynamic Modeling of Underwater Manipulator and Its Simulation

High redundancy and strong uncertainty are two main characteristics for underwater robotic manipulators with unlimited workspace and mobility, but they also make the motion planning and control difficult and complex. In order to setup the groundwork for the research on control schemes, the mathematical representation is built by using the Denavit-Hartenberg (D-H) method [9]&[12]; in addition to the geometry of the manipulator which was studied for establishing the direct and inverse kinematics. Then, the dynamic model is developed and used by employing the Lagrange theorem. Furthermore, derivation and computer simulation is accomplished using the MATLAB environment. The result obtained is compared with mechanical system dynamics analysis software, ADAMS. In addition, the creation of intelligent artificial skin using Interlink Force Sensing ResistorTM technology is presented as groundwork for future work

WiPoD Wireless Positioning System based on 802.11 WLAN Infrastructure

This paper describes WiPoD (Wireless Position Detector) which is a pure software based location determination and tracking (positioning) system. It uses empirical signal strength measurements from different wireless access points for mobile user positioning. It is designed to determine the location of users having 802.11 enabled mobile devices in an 802.11 WLAN infrastructure and track them in real time. WiPoD is the first main module in our LBS (Location Based Services) framework. We tested K-Nearest Neighbor and Triangulation algorithms to estimate the position of a mobile user. We also give the analysis results of these algorithms for real time operations. In this paper, we propose a supportable, i.e. understandable, maintainable, scalable and portable wireless positioning system architecture for an LBS framework. The WiPoD software has a multithreaded structure and was designed and implemented with paying attention to supportability features and real-time constraints and using object oriented design principles. We also describe the real-time software design issues of a wireless positioning system which will be part of an LBS framework.

Real Time Approach for Data Placement in Wireless Sensor Networks

The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.

Biogas Production from Waste using Biofilm Reactor: Factor Analysis in Two Stages System

Factor analysis was applied to two stages biogas production from banana stem waste allowing a screening of the experimental variables second stage temperature (T), organic loading rates (OLR) and hydraulic retention times (HRT). Biogas production was found to be strongly influenced by all the above experimental variables. Results from factorial analysis have shown that all variables which were HRT, OLR and T have significant effect to biogas production. Increased in HRT and OLR could increased the biogas yield. The performance was tested under the conditions of various T (35oC-60oC), OLR (0.3 g TS/l.d–1.9 gTS/l.d), and HRT (3 d–15 d). Conditions for temperature, OLR and HRT in this study were based on the best range obtained from literature review.