A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan

The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.

Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images

Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.

Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping

A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.

An Improved Ant Colony Algorithm for Genome Rearrangements

Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods.

Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data

Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.

Vehicle Type Classification with Geometric and Appearance Attributes

With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.

Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

As internet continues to expand its usage with an  enormous number of applications, cyber-threats have significantly  increased accordingly. Thus, accurate detection of malicious traffic in  a timely manner is a critical concern in today’s Internet for security.  One approach for intrusion detection is to use Machine Learning (ML)  techniques. Several methods based on ML algorithms have been  introduced over the past years, but they are largely limited in terms of  detection accuracy and/or time and space complexity to run. In this  work, we present a novel method for intrusion detection that  incorporates a set of supervised learning algorithms. The proposed  technique provides high accuracy and outperforms existing techniques  that simply utilizes a single learning method. In addition, our  technique relies on partial flow information (rather than full  information) for detection, and thus, it is light-weight and desirable for  online operations with the property of early identification. With the  mid-Atlantic CCDC intrusion dataset publicly available, we show that  our proposed technique yields a high degree of detection rate over 99%  with a very low false alarm rate (0.4%).   

Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema & Interface for Mapping & Communication

The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before – through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.

ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment. The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset

Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.

Visual Analytics of Higher Order Information for Trajectory Datasets

Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, and trajectories. This paper proposes three visual analytics approaches for higher order information of trajectory datasets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical, topological, and directional information. Experimental resultsdemonstrate the applicability and usefulness of proposed three approaches.

QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection

Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expression data. In this study, the entire dataset is divided into clusters by applying K-Means algorithm. Each cluster contains similar genes. The high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm to all the clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value as 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. The proposed work shows that the high classification accuracy.

A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

A Distance Function for Data with Missing Values and Its Application

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model

Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.

Investments Attractiveness via Combinatorial Optimization Ranking

The paper proposes an approach to ranking a set of potential countries to invest taking into account the investor point of view about importance of different economic indicators. For the goal, a ranking algorithm that contributes to rational decision making is proposed. The described algorithm is based on combinatorial optimization modeling and repeated multi-criteria tasks solution. The final result is list of countries ranked in respect of investor preferences about importance of economic indicators for investment attractiveness. Different scenarios are simulated conforming to different investors preferences. A numerical example with real dataset of indicators is solved. The numerical testing shows the applicability of the described algorithm. The proposed approach can be used with any sets of indicators as ranking criteria reflecting different points of view of investors. 

An Educational Data Mining System for Advising Higher Education Students

Educational  data mining  is  a  specific  data   mining field applied to data originating from educational environments, it relies on different  approaches to discover hidden knowledge  from  the  available   data. Among these approaches are   machine   learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems. In  our  research, we propose  a “Student  Advisory  Framework” that  utilizes  classification  and  clustering  to  build  an  intelligent system. This system can be used to provide pieces of consultations to a first year  university  student to  pursue a  certain   education   track   where  he/she  will  likely  succeed  in, aiming  to  decrease   the  high  rate   of  academic  failure   among these  students.  A real case study  in Cairo  Higher  Institute  for Engineering, Computer  Science  and  Management  is  presented using  real  dataset   collected  from  2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.