Performance Characteristics of Some Small Scale Wind Turbines Fabricated in Tanzania

In this study, a field testing has been carried out to assess the power characteristics of some small scale wind turbines fabricated by one native technician from Tanzania. Two Horizontal Axis Wind Turbines (HAWTs), one with five and other with sixteen blades were installed at a height of 2.4m above the ground. The rotation speed of the rotor blade and wind speed approaching the turbines were measured simultaneously. The data obtained were used to determine how the power coefficient varies as a function of tip speed ratio and also the way in which the output power compares with available power in the wind for each turbine. For the sixteen-bladed wind turbine the maximum value of power coefficient of about 0.14 was found to occur at a tip speed ratio of around 0.65 while for the five bladed, these extreme values were respectively attained at approximately 0.2 and 1.7. The five bladed-wind turbine was found to have a higher power efficiency of about 37.5% which is higher compared to the sixteen bladed wind turbine whose corresponding value was 14.37%. This is what would be expected, as the smaller the number of blades of a wind turbine, the higher the electric power efficiency and vice versa. Some of the main reasons for the low efficiency of these machines may be due to the low aerodynamic efficiency of the turbine or low efficiency of the transmission mechanisms such as gearbox and generator which were not examined in this study. It is recommended that some other researches be done to investigate the power efficiency of such machines from different manufacturers in the country. The manufacturers should also be encouraged to use fewer blades in their designs so as to improve the efficiency and at the same time reduce materials used to fabricate the blades. The power efficiency of the electric generators used in the locally fabricated wind turbines should also be examined.

On the Steady-State Performance Characteristics of Finite Hydrodynamic Journal Bearing under Micro-Polar Lubrication with Turbulent Effect

The objective of the present paper is to theoretically investigate the steady-state performance characteristics of journal bearing of finite width, operating with micropolar lubricant in a turbulent regime. In this analysis, the turbulent shear stress coefficients are used based on the Constantinescu’s turbulent model suggested by Taylor and Dowson with the assumption of parallel and inertia-less flow. The numerical solution of the modified Reynolds equation has yielded the distribution of film pressure which determines the static performance characteristics in terms of load capacity, attitude angle, end flow rate and frictional parameter at various values of eccentricity ratio, non-dimensional characteristics length, coupling number and Reynolds number.

Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Designs of Temperature Measuring Device for a Re-Configured Milling Machine

The design of temperature measuring approach for a re-configured milling machine to produce friction stir welds is reported in this paper. The product design specifications for the redesigning of a milling machine were first outlined and the ranking criteria were determined. Three different concepts were generated for the temperature measurement on the reconfigured system and the preferred or the best concept was selected based on the set design ranking criteria. Further simulation and performance analysis was then conducted on the concept. The Infrared Thermography (IRT) concept was selected for the temperature measurement among other concepts generated because it is an ideal and most effective system of measurement in this regard.

Flow Properties of Wood Pulp Suspensions in Pipes

The flow of suspensions of wood pulp fibers in circular pipes has been investigated experimentally. The flow characteristics of pulp suspensions are discussed with regard to five flow regimes designated by the author. In particular, the effects of the shear stress at the pipe wall on the disruption and dispersion of networks of pulp fibers are examined. The values of the disruptive and dispersive shear stresses are formulated as simple expressions depending on only the fiber concentration. Furthermore, the flow properties of the suspensions are described using the yield shear stress.

New Findings on the User’s Preferences about Data Visualization of Online Reviews

The information visualization is still a knowledge field that lacks from a solid theory to support it and there is a myriad of existing methodologies and taxonomies that can be combined and adopted as guidelines. In this context, it is necessary to pre-evaluate as much as possible all the assumptions that are considered for its design and development. We present an exploratory study (n = 123) to detect the graphical preferences of travelers using accommodation portals of Web 2.0 (e.g. tripadvisor.com). We took into account some of the most relevant ground rules applied in the field to map visually data and design end-user interaction. Moreover, the evaluation process was completely data visualization oriented. We found out that people tend to refuse more advanced types of visualization and that a hybrid combination between radial graphs and stacked bars should be explored. In sum, this paper introduces new findings about the visual model and the cognitive response of users of accommodation booking websites.

Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium

An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter & Magnetic parameter are discussed.

Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA

Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.

Vision Based Hand Gesture Recognition Using Generative and Discriminative Stochastic Models

Many approaches to pattern recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features. Generative and discriminative models have very different characteristics, as well as complementary strengths and weaknesses. In this paper, we study these models to recognize the patterns of alphabet characters (A-Z) and numbers (0-9). To handle isolated pattern, generative model as Hidden Markov Model (HMM) and discriminative models like Conditional Random Field (CRF), Hidden Conditional Random Field (HCRF) and Latent-Dynamic Conditional Random Field (LDCRF) with different number of window size are applied on extracted pattern features. The gesture recognition rate is improved initially as the window size increase, but degrades as window size increase further. Experimental results show that the LDCRF is the best in terms of results than CRF, HCRF and HMM at window size equal 4. Additionally, our results show that; an overall recognition rates are 91.52%, 95.28%, 96.94% and 98.05% for CRF, HCRF, HMM and LDCRF respectively.

Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis

A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.

Digital Privacy Legislation Awareness

Privacy is regarded as a fundamental human right and it is clear that the study of digital privacy is an important field. Digital privacy is influenced by new and constantly evolving technologies and this continuous change makes it hard to create legislation to protect people’s privacy from being exploited by misuse of these technologies. This study aims to benefit digital privacy legislation efforts by evaluating the awareness and perceived importance of digital privacy legislation among computer science students. The chosen fixed variables for the population are study year and gamer classification. The use of location based services in mobile applications and games are a concern for digital privacy. For this reason the study focused on computer science students as they have a high likelihood to use and develop this type of software. Surveys were used to evaluate awareness and perceived importance of digital privacy legislation. The results of the study show that privacy legislation and awareness of privacy legislation are important to people. The perception of the importance of privacy legislation increases with academic experience. Awareness of privacy legislation increases from non-gamers to pro gamers. 

The Effects of Weather Anomalies on the Quantitative and Qualitative Parameters of Maize Hybrids of Different Genetic Traits in Hungary

Hybrid selection and the application of hybrid specific production technologies are important in terms of the increase of the yield and crop safety of maize. The main explanation for this is climate change, since weather extremes are going on and seem to accelerate in Hungary too. The biological bases, the selection of appropriate hybrids will be of greater importance in the future. The issue of the adaptability of hybrids will be considerably appreciated. Its good agronomical traits and stress bearing against climatic factors and agrotechnical elements (e.g. different types of herbicides) will be important. There have been examples of 3-4 consecutive droughty years in the past decades, e.g. 1992-1993-1994 or 2009-2011-2012, which made the results of crop production critical. Irrigation cannot be the solution for the problem since currently only the 2% of the arable land is irrigated. Temperatures exceeding the multi-year average are characteristic mainly to the July and August in Hungary, which significantly increase the soil surface evaporation, thus further enhance water shortage. In terms of the yield and crop safety of maize, the weather of these two months is crucial, since the extreme high temperature in July decreases the viability of the pollen and the pistil of maize, decreases the extent of fertilization and makes grain-filling tardy. Consequently, yield and crop safety decrease.

The Impact of Crop Rotation and N Fertilization on the Leaf Area Index, Leaf Disease and Yield of Winter Wheat

The research focused on the effects of previous cropping and fertilizers on the LAI, rhythm of the dry matter, leaf disease intensity and amount of yield. Long term field experiments’ results proved that the previous crop fundamentally determines size, rate and dynamics of the dry matter formation in the spring time vegetation period. The LAI index and crop results of winter wheat can be influenced mainly by raising the fertilizer amount. N fertilization has an outstanding role in the changes in leaf area index (LAI), weight of dry matter and yield of winter wheat. According to our results, the interaction effect of leaf area index, weight of dry matter and fertilization resulted in the maximum yield in biculture and triculture.

Effect of Different Tillage Systems on Soil Properties and Production on Wheat, Maize and Soybean Crop

Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and crop yield. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1 - to assess the effects of tillage systems (Conventional System (CS), Minimum Tillage (MT), No-Tillage (NT)) on soil compaction, soil temperature, soil moisture and soil respiration and 2- to establish the effect of the changes on the production of wheat, maize and soybean. Five treatments were installed: CS-plough; MT-paraplow, chisel, rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this; soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15cm of soil depth and increased the soil temperature by 0.5-2.20C. Water dynamics and soil temperature showed no differences on the effect of crop yields. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the four conservation tillage measures decreased soil respiration, with the best effects of no-tillage. Although wheat production at MT and NT applications, had no significant differences soybean production was significantly affected from MT and NT applications. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility.

Optimization of Deglet-Nour Date (Phoenix dactylifera L.) Phenol Extraction Conditions

The objective of this study was to optimize the extraction conditions for phenolic compounds, total flavonoids, and antioxidant activity from Deglet-Nour variety. The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The effects of extraction variables, namely types of solvent (methanol, ethanol and acetone) and extraction time (1h, 6h, 12h and 24h) on phenolics extraction yield were evaluated. It has been shown that the time of extraction and types of solvent have a statistically significant influence on the extraction of phenolic compounds from Deglet-Nour variety. The optimised conditions yielded values of 80.19 ± 6.37 mg GAE/100 g FW for TPC, 2.34 ± 0.27 mg QE/100 g FW for TFC and 90.20 ± 1.29% for antioxidant activity were methanol solvent and 6 hours of time. According to the results obtained in this study, Deglet-Nour variety can be considered as a natural source of phenolic compounds with good antioxidant capacity.

Effect of Nutrient Supply on Yield and Photosynthetic Parameters of Maize Hybrids

We examined the crop yield results of hybrids in 2012. We found out that in the control treatments the lowest yield was reached with the hybrid PR37M81: 10,012 kg ha-1. The highest yield was in case of hybrid P37N01: 11,581 kg ha-1. As we raised the nutrient doses the lowest yield of all examined nutrient levels was in case of hybrid PR37M81. We measured at N60+PK nutrient level 12,517 kg ha-1, at N120+PK nutrient level 12,760 kg ha-1, and at N150+PK nutrient level 12,535 kg ha-1 yield results. At N60+PK and N120+PK nutrient level the highest yield was reached with the hybrid P9494 (N60+PK: 13,970 kg ha-1, N120+PK: 13,871 kg ha-1). In case of the N150+PK fertilization treatment the hybrid P37N01 gave the highest yield results (13,962 kg ha-1).

The Effects of Crop Rotation and Nutrient Supply on the Leaf Area Values of Winter Wheat in a Long-Term Experiment

Our field experiments were set at the RISF Látókép Experimental Farm of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen, on lime-coated chernozem soil. During our studies, we have investigated two winter wheat varieties (GK Öthalom, Mv Csárdás) of different genotypes. The preceding crops were sunflower and grain maize. We examined wheat leaf area index (LAI) five times during by BBCH scale. We have found that during the different stages of the vegetation period, the LAI values were different depending on the preceding crop, variety and nutrient levels. According to our results, the lowest LAI values were experienced in the control treatment, in the case of both preceding crops. According to our studies we can conclude that crop rotation and fertilizer treatment influenced the studied physiological trait to different extents.

Time Map

The interaction of mass will determine the curvature of space-time, may determine that events proceed at different rates of time at each point in space, so each has a corresponding gravitational potential time. So we can find different values ​​of gravity (g), corresponding to different times (t), thus making a "map of time in space." The space-time is curved by present mass, causing a force of attraction towards the body, but if you invest the curvature of space-time, we find that this field is repulsive: Obtaining negative gravitational forces and positive gravitational forces respectively.

Synthesis and Foam Power of New Biodegradable Surfactant

This work deals with the synthesis and the determination of some surface properties of a new anionic surfactant belonging to sulfonamide derivatives. The interest in this new surfactant is that its behavior in aqueous solution is interesting both from a fundamental and a practice point of view. Indeed, it is well known that this kind of surfactant leads to the formation of bilayer structures, and the microstructures obtained have applications in various fields, ranging from cosmetics to detergents, to biological systems such as cell membranes and bioreactors. The surfactant synthesized from pure n-alkane by photosulfochlorination and derivatized using N-ethanol amine is a mixture of position isomers. These compounds have been analyzed by Gas Chromatography coupled to Mass Spectrometry by Electron Impact mode (GC -MS/IE), and IR. The surface tension measurements were carried out, leading to the determination of the critical micelle concentration (CMC), surface excess and the area occupied per molecule at the interface. The foaming power has also been determined by Bartsch method, and the results have been compared to those of commercial surfactants. The stability of the foam formed has also been evaluated. These compounds show good foaming power characterized in most cases by dry foam.

Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.