Present Energy Scenario and Potentiality of Wind Energy in Bangladesh

Scarcity in energy sector is a major problem, which can hamper the growing development of a country. Bangladesh is one of the electricity-deprived countries; however, the energy demand of Bangladesh is increasing day by day. Due to the shortage of natural resources and environmental issues, many nations are now moving towards renewable energy. Among various form of renewable energy, wind energy is one of most potential source. In this paper, the present energy condition of Bangladesh is discussed and the necessity of moving towards renewable energy is clarified. The wind speed found at different locations at different heights and different years from the survey of several organizations are presented. Although, the results of installed low capacity wind turbines (from few kW to few tens of kW) operated by private or government organization at different places in Bangladesh are not so encouraging; however, it is shown that Bangladesh has a high potential of using large wind turbine (MW range) for capturing wind energy at different places. The present condition of wind energy in Bangladesh and other countries in the world are also presented to emphasize the requisite of moving towards wind energy.

Empirical Evaluation of Performance Optimization Techniques Used in Mobile Applications

Mobile application development is different from regular application development due to the hardware resource limitations existed in the mobile platforms. In the mobile environment, the application needs to be optimized by the developer to produce optimal software with least overhead. This study discussed about performance optimization techniques that are employed in general application development, and how such techniques are performing on mobile platforms through some empirical evaluations on a mobile emulator, Nokia X3-02 and Nokia C5-03devices. The scope of the work is only confined to mobile platform based on Java Mobile edition architecture. The empirical results showed that techniques such as loop unrolling, dependency chain, and linearized getter and setter performed better by a factor of 3 to 7. Whereas declaration and initialization on the same line or separate line did not improve the performance.

Sewer Culvert Installation Method to Accommodate Underground Construction in an Urban Area with Narrow Streets (The Development of Shield Switching Type Micro-Tunneling Method and the Introduction of Construction Examples)

In recent years, a reconstruction project for sewer  pipelines has been progressing in Japan with the aim of renewing old  sewer culverts. However, it is difficult to secure a sufficient base area  for shafts in an urban area because many streets are narrow with a  complex layout. As a result, construction in such urban areas is  generally very demanding.  In urban areas, there is a strong requirement for a safe, reliable and  economical construction method that does not disturb the public’s  daily life and urban activities. With this in mind, we developed a new  construction method called the “shield switching type micro-tunneling  method,” which integrates the micro-tunneling method and shield  method.  In this method, pipeline is constructed first for sections that are  gently curved or straight using the economical micro-tunneling  method, and then the method is switched to the shield method for  sections with a sharp curve or a series of curves without establishing  an intermediate shaft.  This paper provides the information, features and construction  examples of this newly developed method.  

Development of a Vegetation Searching System

This paper describes the development of a Vegetation Searching System based on Web Application in case of Suan Sunandha Rajabhat University. The model was developed by PHP, JavaScript and MySQL database system and it was designed to support searching for endemic and rare species of trees on Web site. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for the system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 4.30 and 4.50, and standard deviation for experts and users were 0.61and 0.73 respectively. Further analysis showed that the quality of the plant searching Website was also at a good level as well.

Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

The Effect of Multipass Cutting in Grinding Operation

Grinding requires high specific energy and the consequent development of high temperature at tool-workpiece contact zone impairs workpiece quality by inducing thermal damage to the surface. Finishing grinding process requires component to be cut more than one pass. This paper deals with an investigation on the effect of multipass cutting on grinding performance in term of surface roughness and surface defect. An experimental set-up has been developed for this and a detailed comparison has been done with a single pass and various numbers of cutting pass. Results showed that surface roughness increase with the increase in a number of cutting pass. Good surface finish of 0.26μm was obtained for single pass cutting and 0.73μm for twenty pass cutting. It was also observed that the thickness of the white layer increased with the increased in a number of cutting pass.

Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

The development of new construction materials using  recycled plastic is important to both the construction and the plastic  recycling industries. Manufacturing of fibers from industrial or  postconsumer plastic waste is an attractive approach with such  benefits as concrete performance enhancement, and reduced needs  for land filling. The main objective of this study is to investigate the  effect of Plastic fibers obtained locally from recycled waste on plastic  shrinkage cracking of ordinary cement based mortar. Parameters  investigated include: fiber length ranging from 20 to 50mm, and fiber  volume fraction ranging from 0% to 1.5% by volume. The test results  showed significant improvement in crack arresting mechanism and  substantial reduction in the surface area of cracks for the mortar  reinforced with recycled plastic fibers compared to plain mortar.  Furthermore, test results indicated that there was a slight decrease in  compressive strength of mortar reinforced with different lengths and  contents of recycled fibers compared to plain mortar. This study  suggests that adding more than 1% of RP fibers to mortar, can be  used effectively for controlling plastic shrinkage cracking of cement  based mortar, and thus results in waste reduction and resources  conservation.  

Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM

Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.

The Visual Inspection of Surgical Tasks Using Machine Vision: Applications to Robotic Surgery

In this paper, the feasibility of using machine vision to assess task completion in a surgical intervention is investigated, with the aim of incorporating vision based inspection in robotic surgery systems. The visually rich operative field presents a good environment for the development of automated visual inspection techniques in these systems, for a more comprehensive approach when performing a surgical task. As a proof of concept, machine vision techniques were used to distinguish the two possible outcomes i.e. satisfactory or unsatisfactory, of three primary surgical tasks involved in creating a burr hole in the skull, namely incision, retraction, and drilling. Encouraging results were obtained for the three tasks under consideration, which has been demonstrated by experiments on cadaveric pig heads. These findings are suggestive for the potential use of machine vision to validate successful task completion in robotic surgery systems. Finally, the potential of using machine vision in the operating theatre, and the challenges that must be addressed, are identified and discussed.

Application of De-Laval Nozzle Transonic Flow Field Computation Approaches

A supersonic expansion cannot be achieved within a convergent-divergent nozzle if the flow velocity does not reach that of the sound at the throat. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. Several approaches were developed in order to describe the transonic expansion, which takes place through the throat of a De-Laval convergent-divergent nozzle. They all allow reaching good results but showing a major shortcoming represented by their inability to describe the transonic flow field for nozzles having a small throat radius. The approach initially developed by Kliegel & Levine uses the velocity series development in terms of the normalized throat radius added to unity instead of solely the normalized throat radius or the traditional small disturbances theory approach. The present investigation carries out the application of these three approaches for different throat radiuses of curvature. The method using the normalized throat radius added to unity shows better results when applied to geometries integrating small throat radiuses.

Evaluation of Stormwater Quantity and Quality Control through Constructed Mini Wet Pond: A Case Study

One of the Best Management Practices (BMPs) promoted in Urban Stormwater Management Manual for Malaysia (MSMA) published by the Department of Irrigation and Drainage (DID) in 2001 is through the construction of wet ponds in new development projects for water quantity and quality control. Therefore, this paper aims to demonstrate a case study on evaluation of a constructed mini wet pond located at Sekolah Rendah Kebangsaan Seksyen 2, Puchong, Selangor, Malaysia in both stormwater quantity and quality aspect particularly to reduce the peak discharge by temporary storing and gradual release of stormwater runoff from an outlet structure or other release mechanism. The evaluation technique will be using InfoWorks Collection System (CS) as the numerical modeling approach for water quantity aspect. Statistical test by comparing the correlation coefficient (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the model in simulating the peak discharge changes. Results demonstrated that there will be a reduction in peak flow at 11 % to 15% and time to peak flow is slower by 5 minutes through a wet pond. For water quality aspect, a survey on biological indicator of water quality carried out depicts that the pond is within the range of rather clean to clean water with the score of 5.3. This study indicates that a constructed wet pond with wetland facilities is able to help in managing water quantity and stormwater generated pollution at source, towards achieving ecologically sustainable development in urban areas.

Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material

The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 Hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.

A Study on a Research and Development Cost-Estimation Model in Korea

In this study, we analyzed the factors that affect research funds using linear regression analysis to increase the effectiveness of investments in national research projects. We collected 7,916 items of data on research projects that were in the process of being finished or were completed between 2010 and 2011. Data pre-processing and visualization were performed to derive statistically significant results. We identified factors that affected funding using analysis of fit distributions and estimated increasing or decreasing tendencies based on these factors.

Development and Evaluation of Gastro Retentive Floating Tablets of Ayurvedic Vati Formulation

Floating tablets of Marichyadi Vati were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using HPMC E50 LV act as Matrixing agent, Carbopol as floating enhancer, microcrystalline cellulose as binder, Sodium bi carbonate as effervescent agent with other excipients. The simplex lattice design was used for selection of variables for tablets formulation. Formulation was optimized on the basis of floating time and in vitro drug release. The results showed that the floating lag time for optimized formulation was found to be 61 second with about 97.32 % of total drug release within 3 hours. The vitro release profiles of drug from the formulation could be best expressed zero order with highest linearity r2 = 0.9943. It was concluded that the gastroretentive drug delivery system can be developed for Marichyadi Vati containing Piperine to increase the residence time of the drug in the stomach and thereby increasing bioavailability.

Solid Waste Pollution and the Importance of Environmental Planning in Managing and Preserving the Public Environment in Benghazi City and Its Surrounding Areas

Pollution and solid waste are the most important environmental problems plaguing the city of Benghazi as well as other cities and towns in Libya. These problems are caused by the lack of environmental planning and sound environmental management. Environmental planning is very important at present for the development of projects that preserve the environment; therefore, the planning process should be prioritized over the management process. Pollution caused by poor planning and environmental management exists not only in Benghazi but also in all other Libyan cities. This study was conducted through various field visits to several neighborhoods and areas within Benghazi as well as its neighboring regions. Follow-ups in these areas were conducted from March 2013 to October 2013 as documented by photographs. The existing methods of waste collection and means of transportation were investigated. Interviews were conducted with relevant authorities, including the Environment Public Authority in Benghazi and the Public Service Company of Benghazi. The objective of this study is to determine the causes of solid waste pollution in Benghazi City and its surrounding areas. Results show that solid waste pollution in Benghazi and its surrounding areas is the result of poor planning and environmental management, population growth, and the lack of hardware and equipment for the collection and transport of waste from the city to the landfill site. One of the most important recommendations in this study is the development of a complete and comprehensive plan that includes environmental planning and environmental management to reduce solid waste pollution.

A Study on the Planning Criteria of Block-Unit Redevelopment to Improve Residential Environment - Focused on Redevelopment Project in Seoul -

In Korea, elements that decide the quality of residential environment are not only diverse, but show deviation as well. However, people do not consider these elements and instead, they try to settle the uniformed style of residential environment, which focuses on the construction development of apartment housing and business based plans. Recently, block-unit redevelopment is becoming the standout alternative plan of standardize redevelopment projects, but constructions become inefficient because of indefinite planning criteria.  In conclusion, the following research is about analyzing and categorizing the development method and legal ground of redevelopment project district and plan determinant and applicable standard; the purpose of this study is to become a basis in compatible analysis of planning standards that will happen in the future.

A Novel GNSS Integrity Augmentation System for Civil and Military Aircraft

This paper presents a novel Global Navigation Satellite System (GNSS) Avionics Based Integrity Augmentation (ABIA) system architecture suitable for civil and military air platforms, including Unmanned Aircraft Systems (UAS). Taking the move from previous research on high-accuracy Differential GNSS (DGNSS) systems design, integration and experimental flight test activities conducted at the Italian Air Force Flight Test Centre (CSV-RSV), our research focused on the development of a novel approach to the problem of GNSS ABIA for mission- and safety-critical air vehicle applications and for multi-sensor avionics architectures based on GNSS. Detailed mathematical models were developed to describe the main causes of GNSS signal outages and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system is able to generate integrity cautions (predictive flags) and warnings (reactive flags), as well as providing steering information to the pilot and electronic commands to the aircraft/UAS flight control systems. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In other words, this novel ABIA system addresses all three cornerstones of GNSS integrity augmentation in mission- and safety-critical applications: prediction (caution flags), reaction (warning flags) and correction (alternate flight path computation).

Development of 3D Laser Scanner for Robot Navigation

Autonomous robotic systems need an equipment like a human eye for their movement. In this study a 3D laser scanner has been designed and implemented for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper.

Students’ Perception of Using Dental e-Models in an Inquiry-Based Curriculum

Aim: To investigate students’ perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding students’ perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, students' preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.

A Preliminary Development of Virtual Sightseeing Website for Thai Temples on Rattanakosin Island

Currently, the sources of cultures and tourist attractions are presented in online documentary form only. In order to make them more virtual, the researcher then collected and presented them in the form of Virtual Temple. The prototype, which is a replica of the actual location, was developed to the website and allows people who are interested in Rattanakosin Island can see in form of Panorama Pan View. By this way, anyone can access the data and appreciate the beauty of Rattanakosin Island in the virtual model like the real place. The result from the experiment showed that the levels of the knowledge on Thai temples in Rattanakosin Island increased; moreover, the users were highly satisfied with the systems. It can be concluded that virtual temples can support to publicize Thai arts, cultures and travels, as well as it can be utilized effectively.