On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation

In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

IMM based Kalman Filter for Channel Estimation in MB OFDM Systems

Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.

Development of Cooling Load Demand Program for Building in Malaysia

Air conditioning is mainly to be used as human comfort medium. It has been use more often in country in which the daily temperatures are high. In scientific, air conditioning is defined as a process of controlling the moisture, cooling, heating and cleaning air. Without proper estimation of cooling load, big amount of waste energy been used because of unsuitable of air conditioning system are not considering to overcoming heat gains from surrounding. This is due to the size of the room is too big and the air conditioning has to use more energy to cool the room and the air conditioning is too small for the room. The studies are basically to develop a program to calculate cooling load. Through this study it is easy to calculate cooling load estimation. Furthermore it-s help to compare the cooling load estimation by hourly and yearly. Base on the last study that been done, the developed software are not user-friendly. For individual without proper knowledge of calculating cooling load estimation might be problem. Easy excess and user-friendly should be the main objective to design something. This program will allow cooling load able be estimate by any users rather than estimation by using rule of thumb. Several of limitation of case study is judged to sure it-s meeting to Malaysia building specification. Finally validation is done by comparison manual calculation and by developed program.

Numerical Investigation on Latent Heat Storage Unit of Different Configurations

The storage of thermal energy as a latent heat of phase change material (PCM) has created considerable interest among researchers in recent times. Here, an attempt is made to carry out numerical investigations to analyze the performance of latent heat storage units (LHSU) employing phase change material. The mathematical model developed is based on an enthalpy formulation. Freezing time of PCM packed in three different shaped containers viz. rectangular, cylindrical and cylindrical shell is compared. The model is validated with the results available in the literature. Results show that for the same mass of PCM and surface area of heat transfer, cylindrical shell container takes the least time for freezing the PCM and this geometric effect is more pronounced with an increase in the thickness of the shell than that of length of the shell.

Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities

Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.

Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I

Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.

Auto-Parking System via Intelligent Computation Intelligence

In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.

Bangla Vowel Characterization Based on Analysis by Synthesis

Bangla Vowel characterization determines the spectral properties of Bangla vowels for efficient synthesis as well as recognition of Bangla vowels. In this paper, Bangla vowels in isolated word have been analyzed based on speech production model within the framework of Analysis-by-Synthesis. This has led to the extraction of spectral parameters for the production model in order to produce different Bangla vowel sounds. The real and synthetic spectra are compared and a weighted square error has been computed along with the error in the formant bandwidths for efficient representation of Bangla vowels. The extracted features produced good representation of targeted Bangla vowel. Such a representation also plays essential role in low bit rate speech coding and vocoders.

Decision Support System “Crop-9-DSS“ for Identified Crops

Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.

Sustainability of Urban Cemeteries and the Transformation of Malay Burial Practices in Kuala Lumpur Metropolitan Region

Land shortage for burials is one of many issues that emerge out of accelerated urban growth in most developing Asian cities, including Kuala Lumpur. Despite actions taken by the federal government and local authorities in addressing this issue, there is no strategic solution being formulated. Apart from making provisions for land to be developed as new cemeteries, the future plan is merely to allocate reserve land to accommodate the increasing demands of burial grounds around the city. This paper examines problems that arise from the traditional practices of Malay funerary as well as an insight to current urban practices in managing Muslim burial spaces around Kuala Lumpur metropolitan region. This paper will also provide some solutions through design approach that can be applied to counter the existing issues.

Improving Carbon Sequestration in Concrete: A Literature Review

Due to urbanization, trees and plants which covered a great land mass of the earth and are an excellent carbon dioxide (CO2) absorber through photosynthesis are being replaced by several concrete based structures. It is therefore important to have these cement based structures absorb the large volume of carbon dioxide which the trees would have removed from the atmosphere during their useful lifespan. Hence the need for these cement based structures to be designed to serve other useful purposes in addition to shelter. This paper reviews the properties of Sodium carbonate and sugar as admixtures in concrete with respect to improving carbon sequestration in concrete.

Image Enhancement of Medical Images using Gabor Filter Bank on Hexagonal Sampled Grids

For about two decades scientists have been developing techniques for enhancing the quality of medical images using Fourier transform, DWT (Discrete wavelet transform),PDE model etc., Gabor wavelet on hexagonal sampled grid of the images is proposed in this work. This method has optimal approximation theoretic performances, for a good quality image. The computational cost is considerably low when compared to similar processing in the rectangular domain. As X-ray images contain light scattered pixels, instead of unique sigma, the parameter sigma of 0.5 to 3 is found to satisfy most of the image interpolation requirements in terms of high Peak Signal-to-Noise Ratio (PSNR) , lower Mean Squared Error (MSE) and better image quality by adopting windowing technique.

Novel D- glucose Based Glycomonomers Synthesis and Characterization

In the last decade, carbohydrates have attracted great attention as renewable resources for the chemical industry. Carbohydrates are abundantly found in nature in the form of monomers, oligomers and polymers, or as components of biopolymers and other naturally occurring substances. As natural products, they play important roles in conferring certain physical, chemical, and biological properties to their carrier molecules.The synthesis of this particular carbohydrate glycomonomer is part of our work to obtain biodegradable polymers. Our current paper describes the synthesis and characterization of a novel carbohydrate glycomonomer starting from D-glucose, in several synthesis steps, that involve the protection/deprotection of the D-glucose ring via acetylation, tritylation, then selective deprotection of the aromaticaliphatic protective group, in order to obtain 1,2,3,4-tetra-O-acetyl- 6-O-allyl-β-D-glucopyranose. The glycomonomer was then obtained by the allylation in drastic conditions of 1,2,3,4-tetra-O-acetyl-6-Oallyl- β-D-glucopyranose with allylic alcohol in the presence of stannic chloride, in methylene chloride, at room temperature. The proposed structure of the glycomonomer, 2,3,4-tri-O-acetyl-1,6-di- O-allyl-β-D-glucopyranose, was confirmed by FTIR, NMR and HPLC-MS spectrometry. This glycomonomer will be further submitted to copolymerization with certain acrylic or methacrylic monomers in order to obtain competitive plastic materials for applications in the biomedical field.

Big Bang – Big Crunch Optimization Method in Optimum Design of Complex Composite Laminates

An accurate optimal design of laminated composite structures may present considerable difficulties due to the complexity and multi-modality of the functional design space. The Big Bang – Big Crunch (BB-BC) optimization method is a relatively new technique and has already proved to be a valuable tool for structural optimization. In the present study the exceptional efficiency of the method is demonstrated by an example of the lay-up optimization of multilayered anisotropic cylinders based on a three-dimensional elasticity solution. It is shown that, due to its simplicity and speed, the BB-BC is much more efficient for this class of problems when compared to the genetic algorithms.

Environmental Analysis of Springs in Urban Areas–A Methodological Proposal

The springs located in urban areas are the outpouring of surface water, which can serve as water supply, effluent receptors and important local macro-drainage elements. With unplanned occupation, non-compliance with environmental legislation and the importance of these water bodies, it is vital to analyze the springs within urban areas, considering the Brazilian forest code. This paper submits an analysis and discussion methodology proposal of environmental compliance functions of urban springs, by means of G.I.S. - Geographic Information System analysis - and in situ analysis. The case study included two springs which exhibit a history of occupation along its length, with different degrees of impact. The proposed method is effective and easy to apply, representing a powerful tool for analyzing the environmental conditions of springs in urban areas.

Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Modeling and Simulation of a Serial Production Line with Constant Work-In-Process

This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.

On Mobile Checkpointing using Index and Time Together

Checkpointing is one of the commonly used techniques to provide fault-tolerance in distributed systems so that the system can operate even if one or more components have failed. However, mobile computing systems are constrained by low bandwidth, mobility, lack of stable storage, frequent disconnections and limited battery life. Hence, checkpointing protocols having lesser number of synchronization messages and fewer checkpoints are preferred in mobile environment. There are two different approaches, although not orthogonal, to checkpoint mobile computing systems namely, time-based and index-based. Our protocol is a fusion of these two approaches, though not first of its kind. In the present exposition, an index-based checkpointing protocol has been developed, which uses time to indirectly coordinate the creation of consistent global checkpoints for mobile computing systems. The proposed algorithm is non-blocking, adaptive, and does not use any control message. Compared to other contemporary checkpointing algorithms, it is computationally more efficient because it takes lesser number of checkpoints and does not need to compute dependency relationships. A brief account of important and relevant works in both the fields, time-based and index-based, has also been included in the presentation.

Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters

Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.

International Financial Crises and the Political Economy of Financial Reforms in Turkey: 1994-2009

This study1 holds for the formation of international financial crisis and political factors for economic crisis in Turkey, are evaluated in chronological order. The international arena and relevant studies conducted in Turkey work in the literature are assessed. The main purpose of the study is to hold the linkage between the crises and political stability in Turkey in details, and to examine the position of Turkey in this regard. The introduction part follows the literature survey on the models explaining causes and results of the crises, the second part of the study. In the third part, the formations of the world financial crises are studied. The fourth part, financial crisis in Turkey in 1994, 2000, 2001 and 2008 are reviewed and their political reasons are analyzed. In the last part of the study the results and recommendations are held. Political administrations have laid the grounds for an economic crisis in Turkey. In this study, the emergence of an economic crisis in Turkey and the developments after the crisis are chronologically examined and an explanation is offered as to the cause and effect relationship between the political administration and economic equilibrium in the country. Economic crises can be characterized as follows: high prices of consumables, high interest rates, current account deficits, budget deficits, structural defects in government finance, rising inflation and fixed currency applications, rising government debt, declining savings rates and increased dependency on foreign capital stock. Entering into the conditions of crisis during a time when the exchange value of the country-s national currency was rising, speculative finance movements and shrinking of foreign currency reserves happened due to expectations for devaluation and because of foreign investors- resistance to financing national debt, and a financial risk occurs. During the February 2001 crisis and immediately following, devaluation and reduction of value occurred in Turkey-s stock market. While changing over to the system of floating exchange rates in the midst of this crisis, the effects of the crisis on the real economy are discussed in this study. Administered politics include financial reforms, such as the rearrangement of banking systems. These reforms followed with the provision of foreign financial support. There have been winners and losers in the imbalance of income distribution, which has recently become more evident in Turkey-s fragile economy.