A Study on Exclusive Breastfeeding using Over-dispersed Statistical Models

Breastfeeding is an important concept in the maternal life of a woman. In this paper, we focus on exclusive breastfeeding. Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. This type of breastfeeding is very important during the first six months because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in Mauritius, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we give an overview of exclusive breastfeeding in Mauritius and the factors influencing it. We further analyze the local practices of exclusive breastfeeding using the Generalized Poisson regression model and the negative-binomial model since the data are over-dispersed.

An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics

In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.

Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Some Characteristics of Systolic Arrays

In this paper is investigated a possible optimization of some linear algebra problems which can be solved by parallel processing using the special arrays called systolic arrays. In this paper are used some special types of transformations for the designing of these arrays. We show the characteristics of these arrays. The main focus is on discussing the advantages of these arrays in parallel computation of matrix product, with special approach to the designing of systolic array for matrix multiplication. Multiplication of large matrices requires a lot of computational time and its complexity is O(n3 ). There are developed many algorithms (both sequential and parallel) with the purpose of minimizing the time of calculations. Systolic arrays are good suited for this purpose. In this paper we show that using an appropriate transformation implicates in finding more optimal arrays for doing the calculations of this type.

Abstraction Hierarchies for Engineering Design

Complex engineering design problems consist of numerous factors of varying criticalities. Considering fundamental features of design and inferior details alike will result in an extensive waste of time and effort. Design parameters should be introduced gradually as appropriate based on their significance relevant to the problem context. This motivates the representation of design parameters at multiple levels of an abstraction hierarchy. However, developing abstraction hierarchies is an area that is not well understood. Our research proposes a novel hierarchical abstraction methodology to plan effective engineering designs and processes. It provides a theoretically sound foundation to represent, abstract and stratify engineering design parameters and tasks according to causality and criticality. The methodology creates abstraction hierarchies in a recursive and bottom-up approach that guarantees no backtracking across any of the abstraction levels. The methodology consists of three main phases, representation, abstraction, and layering to multiple hierarchical levels. The effectiveness of the developed methodology is demonstrated by a design problem.

Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions

The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.

Optimal Facility Layout Problem Solution Using Genetic Algorithm

Facility Layout Problem (FLP) is one of the essential problems of several types of manufacturing and service sector. It is an optimization problem on which the main objective is to obtain the efficient locations, arrangement and order of the facilities. In the literature, there are numerous facility layout problem research presented and have used meta-heuristic approaches to achieve optimal facility layout design. This paper presented genetic algorithm to solve facility layout problem; to minimize total cost function. The performance of the proposed approach was verified and compared using problems in the literature.

Evaluation of Shear Strength Parameters of Amended Loess through Using Common Admixtures in Gorgan, Iran

Non-saturated soils that while saturation greatly decrease their volume, have sudden settlement due to increasing humidity, fracture and structural crack are called loess soils. Whereas importance of civil projects including: dams, canals and constructions bearing this type of soil and thereof problems, it is required for carrying out more research and study in relation to loess soils. This research studies shear strength parameters by using grading test, Atterberg limit, compression, direct shear and consolidation and then effect of using cement and lime additives on stability of loess soils is studied. In related tests, lime and cement are separately added to mixed ratios under different percentages of soil and for different times the stabilized samples are processed and effect of aforesaid additives on shear strength parameters of soil is studied. Results show that upon passing time the effect of additives and collapsible potential is greatly decreased and upon increasing percentage of cement and lime the maximum dry density is decreased; however, optimum humidity is increased. In addition, liquid limit and plastic index is decreased; however, plastic index limit is increased. It is to be noted that results of direct shear test reveal increasing shear strength of soil due to increasing cohesion parameter and soil friction angle.

Probabilistic Modeling of Network-induced Delays in Networked Control Systems

Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.

Multi-Context Recurrent Neural Network for Time Series Applications

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Low Cost Real-Time Communication Braille Hand-Glove for Visually Impaired Using Slot Sensors and Vibration Motors

Visually impaired people find it extremely difficult to acquire basic and vital information necessary for their living. Therefore, they are at a very high risk of being socially excluded as a result of poor access to information. In recent years, several attempts have been made in improving the communication methods for visually impaired people which involve tactile sensation such as finger Braille, manual alphabets and the print on palm method and several other electronic devices. But, there are some problems which arise in such methods such as lack of privacy and lack of compatibility to computer environment. This paper describes a low cost Braille hand glove for blind people using slot sensors and vibration motors with the help of which they can read and write emails, text messages and read e-books. This glove allows the person to type characters based on different Braille combination using six slot sensors. The vibration in six different positions of the glove which matches to the Braille code allows them to read characters.

Measuring of Urban Sustainability in Town Planners Practice

Physical urban form is recognized to be the media for human transactions. It directly influences the travel demand of people in a specific urban area and the amount of energy used for transportation. Distorted, sprawling form often creates sustainability problems in urban areas. It is declared in EU strategic planning documents that compact urban form and mixed land use pattern must be given the main focus to achieve better sustainability in urban areas, but the methods to measure and compare these characteristics are still not clear. This paper presents the simple methods to measure the spatial characteristics of urban form by analyzing the location and distribution of objects in an urban environment. The extended CA (cellular automata) model is used to simulate urban development scenarios.

Coastal Resource Management: Fishermen-s Perceptions of Seaweed Farming in Indonesia

Seaweed farming is emerging as a viable alternative activity in the Indonesian fisheries sector. This paper aims to investigate people-s perceptions of seaweed farming, to analyze its social and economic impacts and to identify the problems and obstacles hindering its continued development. Structured and semi-structured questionnaires were prepared to obtain qualitative data, and interviews were conducted with fishermen who also plant seaweed. The findings showed that fishermen in the Laikang Bay were enthusiastic about cultivating seaweeds and that seaweed plays a major role in supporting the household economy of fishermen. However, current seaweed drying technologies cannot support increased seaweed production on a farm or plot, especially in the rainy season. Additionally, variable monsoon seasons and long marketing channels are still major constraints on the development of the industry. Finally, capture fisheries, the primary economic livelihood of fishermen of older generations, is being slowly replaced by seaweed farming.

Measuring Awareness of Waste Management among School Children using Rasch Model Analysis

The enormous amount of solid waste generated poses huge problems in waste management. It is therefore important to gauge the awareness of the public with regards to waste management. In this study, an instrument was developed to measure the beliefs, attitudes and practices about waste management of school children as an indication of their waste management awareness. This instrument has showed that a positive awareness towards waste management refers mainly to attitudes. However it is not easy for people to practice waste management as a reflection of their awareness.

Water Pollution in Soshanguve Environs of South Africa

Surface water pollution is one of the serious environmental problems in rural areas of South Africa due to discharge of household waste into the streams, turning them into open sewers. In this study, samples of water were collected from a stream in Soshanguve and analysed. The result showed that pollution in the area was caused by man and its activities. The water quality in the area was found to have deterioted significantly after water runoff from farms and household wastes. The result shows, fertilizer runoff contributes 50% of the pollution while pesticides and sediments contribute up to 10% respectively in the streams, while household waste contributes up to 30%. This study gives an outline of the sources of water pollution in the area and provides a process of creating a clean and unpolluted environment for Soshanguve community in Pretoria north in order to achieve the 7th aim of the millennium development goals by 2015, which is ensuring environmental sustainability.

Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

Service Architecture for 3rd Party Operator's Participation

Next generation networks with the idea of convergence of service and control layer in existing networks (fixed, mobile and data) and with the intention of providing services in an integrated network, has opened new horizon for telecom operators. On the other hand, economic problems have caused operators to look for new source of income including consider new services, subscription of more users and their promotion in using morenetwork resources and easy participation of service providers or 3rd party operators in utilizing networks. With this requirement, an architecture based on next generation objectives for service layer is necessary. In this paper, a new architecture based on IMS model explains participation of 3rd party operators in creation and implementation of services on an integrated telecom network.

Arriving at an Optimum Value of Tolerance Factor for Compressing Medical Images

Medical imaging uses the advantage of digital technology in imaging and teleradiology. In teleradiology systems large amount of data is acquired, stored and transmitted. A major technology that may help to solve the problems associated with the massive data storage and data transfer capacity is data compression and decompression. There are many methods of image compression available. They are classified as lossless and lossy compression methods. In lossy compression method the decompressed image contains some distortion. Fractal image compression (FIC) is a lossy compression method. In fractal image compression an image is coded as a set of contractive transformations in a complete metric space. The set of contractive transformations is guaranteed to produce an approximation to the original image. In this paper FIC is achieved by PIFS using quadtree partitioning. PIFS is applied on different images like , Ultrasound, CT Scan, Angiogram, X-ray, Mammograms. In each modality approximately twenty images are considered and the average values of compression ratio and PSNR values are arrived. In this method of fractal encoding, the parameter, tolerance factor Tmax, is varied from 1 to 10, keeping the other standard parameters constant. For all modalities of images the compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the decompressed image is arrived by PSNR values. From the results it is observed that the compression ratio increases with the tolerance factor and mammogram has the highest compression ratio. The quality of the image is not degraded upto an optimum value of tolerance factor, Tmax, equal to 8, because of the properties of fractal compression.

Framework for Delivery Reliability in European Machinery and Equipment Industry

Today-s manufacturing companies are facing multiple and dynamic customer-supplier-relationships embedded in nonhierarchical production networks. This complex environment leads to problems with delivery reliability and wasteful turbulences throughout the entire network. This paper describes an operational model based on a theoretical framework which improves delivery reliability of each individual customer-supplier-relationship within non-hierarchical production networks of the European machinery and equipment industry. By developing a non-centralized coordination mechanism based on determining the value of delivery reliability and derivation of an incentive system for suppliers the number of in time deliveries can be increased and thus the turbulences in the production network smoothened. Comparable to an electronic stock exchange the coordination mechanism will transform the manual and nontransparent process of determining penalties for delivery delays into an automated and transparent market mechanism creating delivery reliability.

Investigation of Anti-Inflammatory, Antipyretic and Analgesic Effect of Yemeni Sidr Honey

Traditionally, Yemini Sidr honey has been reported to cure liver problems, stomach ulcers, and respiratory disorders. In this experiment, we evaluated Yemeni Sidr honey for its ability to protect inflammations caused by acetic acid and formalin -induced writhing, carrageenan and histamine-induced paw oedema in experimental rat model. Hyperpyrexia, membrane stabilizing activity, and phytochemical screening of the honey was also examined. Yemini Sidr Honey at (100, 200 and 500 mg/kg) exhibited a concentration dependant inhibition of acetic acid induced and formalin induced writhing, paw oedema induced by carrageenan & histamine, and hyperpyrexia induced by brewer's yeast, it also inhibited membrane stabilizing activity. Phytochemical screenings of the honey reveal the presence of flavonoids, steroid, alkaloids, saponins and tannins. This study suggested that Yemeni Sidr honey possess very strong antiinflammatory, analgesic and antipyretic effects and these effects would be a result of the phytochemicals present.