Determining of Threshold Levels of Burst by Burst AQAM/CDMA in Slow Rayleigh Fading Environments

In this paper, we are going to determine the threshold levels of adaptive modulation in a burst by burst CDMA system by a suboptimum method so that the above method attempts to increase the average bit per symbol (BPS) rate of transceiver system by switching between the different modulation modes in variable channel condition. In this method, we choose the minimum values of average bit error rate (BER) and maximum values of average BPS on different values of average channel signal to noise ratio (SNR) and then calculate the relative threshold levels of them, so that when the instantaneous SNR increases, a higher order modulation be employed for increasing throughput and vise-versa when the instantaneous SNR decreases, a lower order modulation be employed for improvement of BER. In transmission step, by this adaptive modulation method, in according to comparison between obtained estimation of pilot symbols and a set of above suboptimum threshold levels, above system chooses one of states no transmission, BPSK, 4QAM and square 16QAM for modulation of data. The expected channel in this paper is a slow Rayleigh fading.

A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations

In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.

Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile

An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.

Another Approach of Similarity Solution in Reversed Stagnation-point Flow

In this paper, the two-dimensional reversed stagnationpoint flow is solved by means of an anlytic approach. There are similarity solutions in case the similarity equation and the boundary condition are modified. Finite analytic method are applied to obtain the similarity velocity function.

Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Users- Motivation and Satisfaction with IS

To motivate users to adopt and use information systems effectively, the nature of motivation should be carefully investigated. People are usually motivated within ongoing processes which include a chain of states such as perception, stimulation, motivation, actions and reactions and finally, satisfaction. This study assumes that the relevant motivation processes should be executed in a proper and continuous manner to be able to persistently motivate and re-motivate people in organizational settings and towards information systems. On this basis, the study attempts to propose possible relationships between this process-nature view of motivation in terms of the common chain of states and the nearly unique properties of information systems as is perceived by users in the sense of a knowledgeable and authoritative entity. In the conclusion section, some guidelines for practitioners are suggested to ease their tasks for motivating people to adopt and use information systems.

A Meta-Heuristic Algorithm for Vertex Covering Problem Based on Gravity

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving vertex covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the vertex covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Complexity of Mathematical Expressions in Adaptive Multimodal Multimedia System Ensuring Access to Mathematics for Visually Impaired Users

Our adaptive multimodal system aims at correctly presenting a mathematical expression to visually impaired users. Given an interaction context (i.e. combination of user, environment and system resources) as well as the complexity of the expression itself and the user-s preferences, the suitability scores of different presentation format are calculated. Unlike the current state-of-the art solutions, our approach takes into account the user-s situation and not imposes a solution that is not suitable to his context and capacity. In this wok, we present our methodology for calculating the mathematical expression complexity and the results of our experiment. Finally, this paper discusses the concepts and principles applied on our system as well as their validation through cases studies. This work is our original contribution to an ongoing research to make informatics more accessible to handicapped users.

Controller Synthesis of Switched Positive Systems with Bounded Time-Varying Delays

This paper addresses the controller synthesis problem of discrete-time switched positive systems with bounded time-varying delays. Based on the switched copositive Lyapunov function approach, some necessary and sufficient conditions for the existence of state-feedback controller are presented as a set of linear programming and linear matrix inequality problems, hence easy to be verified. Another advantage is that the state-feedback law is independent on time-varying delays and initial conditions. A numerical example is provided to illustrate the effectiveness and feasibility of the developed controller.

Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction

The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.

Development of EN338 (2009) Strength Classes for Some Common Nigerian Timber Species Using Three Point Bending Test

The work presents a development of EN338 strength classes for Strombosia pustulata, Pterygotama crocarpa, Nauclea diderrichii and Entandrophragma cyclindricum Nigerian timber species. The specimens for experimental measurements were obtained from the timber-shed at the famous Panteka market in Kaduna in the northern part of Nigeria. Laboratory experiments were conducted to determine the physical and mechanical properties of the selected timber species in accordance with EN 13183-1 and ASTM D193. The mechanical properties were determined using three point bending test. The generated properties were used to obtain the characteristic values of the material properties in accordance with EN384. The selected timber species were then classified according to EN 338. Strombosia pustulata, Pterygotama crocarpa, Nauclea diderrichii and Entandrophragma cyclindricum were assigned to strength classes D40, C14, D40 and D24 respectively. Other properties such as tensile and compressive strengths parallel and perpendicular to grains, shear strength as well as shear modulus were obtained in accordance with EN 338. 

LMI Approach to Regularization and Stabilization of Linear Singular Systems: The Discrete-time Case

Sufficient linear matrix inequalities (LMI) conditions for regularization of discrete-time singular systems are given. Then a new class of regularizing stabilizing controllers is discussed. The proposed controllers are the sum of predictive and memoryless state feedbacks. The predictive controller aims to regularizing the singular system while the memoryless state feedback is designed to stabilize the resulting regularized system. A systematic procedure is given to calculate the controller gains through linear matrix inequalities.

Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System

In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.

Morpho-histological Study of the Bursa of Fabricius of Broiler Chickens during Post-hashing Age

The study of morphometric and histologic evolutions of the Bursa of Fabricus during 27 weeks of post-hashing age, realized on 88 subjects of broiler chicken they permitted to collect information about the morpho-histological aspect according to their post-hashing age; showed the size and the weight of the Bursa of Fabricius which reach their maximum between the 10th and the 11th week of age and the physiologic involution phenomena. These variations are in close relationship to the sexual maturity. These results can be used in the diagnosis of viral disease such as the Gumboro disease, Marek disease.

A Parametric Study on Deoiling Hydrocyclones Flow Field

Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.

Inductance Characteristic of Annealed Titanium Dioxide on Silicon Substrate

The control of oxygen flow rate during growth of titanium dioxide by mass flow controller in DC plasma sputtering growth system is studied. The impedance of TiO2 films for inductance effect is influenced by annealing time and oxygen flow rate. As annealing time is increased, the inductance of TiO2 film is the more. The growth condition of optimum and maximum inductance for TiO2 film to serve as sensing device are oxygen flow rate of 15 sccm and large annealing time. The large inductance of TiO2 film will be adopted to fabricate the biosensor to obtain the high sensitivity of sensing in biology.

Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

This paper describes reactive neural control used to generate phototaxis and obstacle avoidance behavior of walking machines. It utilizes discrete-time neurodynamics and consists of two main neural modules: neural preprocessing and modular neural control. The neural preprocessing network acts as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional walking. As a result, through a sensorimotor loop this reactive neural controller enables the machines to explore a dynamic environment by avoiding obstacles, turn toward a light source, and then stop near to it.

Analysis and Preservation of Lime-Kilns in Corsica

The aim of this paper is the analysis and preservation of lime kilns, focusing on the structure, construction, and functionality of vertical shaft lime kilns of the Cap Corse in Corsica. Plans and sections of two lime kilns are presented in detail, providing an overall picture of this specific industrial heritage. The potential damage areas are identified performing structural analysis of a lime kiln using the finite element method. A restoration and strengthening technique that satisfies the directions of the Charter of Venice is presented using post-tensioning tendons. Recommendations are given to preserve and promote these important historical structures integrating them into the custom footpath.

A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders

The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.

Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy

In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.