Optimal Mitigation of Slopes by Probabilistic Methods

A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF

Behavioural-Orientation and Continuity of Informality in Ghana

The expanding informal sector in developing countries and in Ghana in particular from the 1980s has now been aggravated by the growing population and downsizing in both the public and private sectors, with displaced workers finding alternative livelihoods in the informal sector. Youth and graduate unemployment also swell the numbers and further promote the continuity of the sector. Formal workers and institutions facilitate the growth and complicate demarcations between informality within the formal and informal sectors. In spite of its growth and increasing importance, the informal economy does not feature in policy debates and has often been neglected by the Ghana government. The phenomenon has evolved with modernity into myriad unimaginable forms. Indeed, actors within the sector often clash with the interventions provided by policy makers - because neither the operatives nor the activities they perform can be clearly defined. This study uses in-depth interviews to explore the behavioural nature of the informal workers in Ghana to understand how the operatives describe and perceive the sector, and to identify the factors that influence their drive to stay within the sector. This paper concludes that the operatives clearly distinguish between the formal and informal sectors and identify the characteristics and conditions that constitute the informal sector. Other workers are trapped between formality and informality. The findings also enumerate the push and pull factors contributing to the growth of the sector.

Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Autonomic Management for Mobile Robot Battery Degradation

The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks.

Innovative Fabric Integrated Thermal Storage Systems and Applications

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Numerical and Experimental Assessment of a PCM Integrated Solar Chimney

Natural ventilation systems have increasingly been the subject of research due to rising energetic consumption within the building sector and increased environmental awareness. In the last two decades, the mounting concern of greenhouse gas emissions and the need for an efficient passive ventilation system have driven the development of new alternative passive technologies such as ventilated facades, trombe walls or solar chimneys. The objective of the study is the assessment of PCM panels in an in situ solar chimney for the establishment of a numerical model. The PCM integrated solar chimney shows slight performance improvement in terms of mass flow rate and external temperature and outlet temperature difference. An increase of 11.3659 m3/h can be observed during low wind speed periods. Additionally, the surface temperature across the chimney goes beyond 45 °C and allows the activation of PCM panels.

Economics of Open and Distance Education in the University of Ibadan, Nigeria

One of the major objectives of the Nigeria national policy on education is the provision of equal educational opportunities to all citizens at different levels of education. With regards to higher education, an aspect of the policy encourages distance learning to be organized and delivered by tertiary institutions in Nigeria. This study therefore, determines how much of the Government resources are committed, how the resources are utilized and what alternative sources of funding are available for this system of education. This study investigated the trends in recurrent costs between 2004/2005 and 2013/2014 at University of Ibadan Distance Learning Centre (DLC). A descriptive survey research design was employed for the study. Questionnaire was the research instrument used for the collection of data. The population of the study was 280 current distance learning education students, 70 academic staff and 50 administrative staff. Only 354 questionnaires were correctly filled and returned. Data collected were analyzed and coded using the frequencies, ratio, average and percentages were used to answer all the research questions. The study revealed that staff salaries and allowances of academic and non-academic staff represent the most important variable that influences the cost of education. About 55% of resources were allocated to this sector alone. The study also indicates that costs rise every year with increase in enrolment representing a situation of diseconomies of scale. This study recommends that Universities who operates distance learning program should strive to explore other internally generated revenue option to boost their revenue. University of Ibadan, being the premier university in Nigeria, should be given foreign aid and home support, both financially and materially, to enable the institute to run a formidable distance education program that would measure up in planning and implementation with those of developed nation.

Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite

Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects. 

Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Analysis of Green Wood Preservation Chemicals

Wood decay is addressed continuously within the wood industry through use and development of wood preservatives. The increasing awareness on the negative effects of many chemicals towards the environment is causing political restrictions in their use and creating more urgent need for research on green alternatives. This paper discusses some of the possible natural extracts for wood preserving applications and compares the analytical methods available for testing their behavior and efficiency against decay fungi. The results indicate that natural extracts have interesting chemical constituents that delay fungal growth but vary in efficiency depending on the chemical concentration and substrate used. Results also suggest that presence and redistribution of preservatives in wood during exposure trials can be assessed by spectral imaging methods although standardized methods are not available. This study concludes that, in addition to the many standard methods available, there is a need to develop new faster methods for screening potential preservative formulation while maintaining the comparability and relevance of results.

Conventional and Islamic Perspective in Accounting: Potential for Alternative Reporting Framework

This paper provides an overview of fundamental philosophical and functional differences in conventional and Islamic accounting. The aim of this research is to undertake a detailed analysis focus on specific illustrations drawn from both these systems and highlight how these differences implicate in recording financial transactions and preparation of financial reports for a range of stakeholders. Accounting as being universally considered as a platform for providing a ‘true and fair’ view of corporate entities can be challenged in the current world view, as the business environment has evolved and transformed significantly. Growth of the non-traditional corporate entity such as Islamic financial institutions, fundamentally questions the applicability of conventional accounting standards in preparation of Shariah-compliant financial reporting. Coupled with this, there are significant concerns about the wider applicability of Islamic accounting standards and framework in order to achieve reporting practices satisfying the information needs generally. Against the backdrop of such a context, this paper raises fundamental question as to how potential convergence could be achieved between these two systems in order to provide users’ a transparent and comparable state of financial information resulting in an alternative framework of financial reporting.

Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Cognition of Driving Context for Driving Assistance

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Formulation of Mortars with Marine Sediments

The transition to a more sustainable economy is directed by a reduction in the consumption of raw materials in equivalent production. The recovery of byproducts and especially the dredged sediment as mineral addition in cements matrix represents an alternative to reduce raw material consumption and construction sector’s carbon footprint. However, the efficient use of sediment requires adequate and optimal treatment. Several processing techniques have so far been applied in order to improve some physicochemical properties. The heat treatment by calcination was effective in removing the organic fraction and activates the pozzolanic properties. In this article, the effect of the optimized heat treatment of marine sediments in the physico-mechanical and environmental properties of mortars are shown. A finding is that the optimal substitution of a portion of cement by treated sediments by calcination at 750 °C helps to maintain or improve the mechanical properties of the cement matrix in comparison with a standard reference mortar. The use of calcined sediment enhances mortar behavior in terms of mechanical strength and durability. From an environmental point of view and life cycle, mortars formulated containing treated sediments are considered inert with respect to the inert waste storage facilities reference (ISDI-France).

A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

A 3Y/3Y Pole-Changing Winding of High-Power Asynchronous Motors

Requirement for pole-changing motors emerged at the very early times of asynchronous motor design. Different solutions have been elaborated and some of them are generally used. An alternative is the so called 3 Y/3 Y pole-changing winding. This paper deals with high power application of this solution. A complete and comprehensive study is introduced, including features and design guidelines. The method presented in this paper is especially suitable for pole numbers being close to each other. The study also reveals that the method is more advantageous then the existing solutions for high power motors with 1:3 pole ratio. Using this motor, a new and complete drive supply system has been proposed as most appropriate arrangement of high power main naval propulsion drive. Further, the method makes possible to extend the pole ratio to 1:6, 1:9, 1:12, etc. At the end, the proposal is further extended to the here so far missing 1:4, 1:5, 1:7 etc. pole ratios. A complete proposal for the theoretically infinite range has been given in this way.