On Frenet-Serret Invariants of Non-Null Curves in Lorentzian Space L5

The aim of this paper is to determine Frenet-Serret invariants of non-null curves in Lorentzian 5-space. First, we define a vector product of four vectors, by this way, we present a method to calculate Frenet-Serret invariants of the non-null curves. Additionally, an algebraic example of presented method is illustrated.

A Review of in-orbit Observations of Radiation- Induced Effects in Commercial Memories onboard Alsat-1

This paper presents a review of an 8-year study on radiation effects in commercial memory devices operating within the main on-board computer system OBC386 of the Algerian microsatellite Alsat-1. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in these commercial memories shows that the typical SEU rate at alsat-1's orbit is 4.04 × 10-7 SEU/bit/day, where 98.6% of these SEUs cause single-bit errors, 1.22% cause double-byte errors, and the remaining SEUs result in multiple-bit and severe errors.

Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis

The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.

Piezomechanical Systems for Algae Cell Ultrasonication

Nowadays for algae cell ultrasonication the longitudinal ultrasonic piezosystems are used. In this paper a possibility of creating unique ultrasonic piezoelectric system, which would allow reducing energy losses and concentrating this energy to a small closed volume are proposed. The current vibrating systems whose ultrasonic energy is concentrated inside of hollow cylinder in which water-algae mixture is flowing. Two, three or multiply ultrasonic composite systems to concentrate total energy into a hollow cylinder to creating strong algae cell ultrasonication are used. The experiments and numerical FEM analysis results using diskshaped transducer and the first biological test results on algae cell disruption by ultrasonication are presented as well.

A New Application of Stochastic Transformation

In cryptography, confusion and diffusion are very important to get confidentiality and privacy of message in block ciphers and stream ciphers. There are two types of network to provide confusion and diffusion properties of message in block ciphers. They are Substitution- Permutation network (S-P network), and Feistel network. NLFS (Non-Linear feedback stream cipher) is a fast and secure stream cipher for software application. NLFS have two modes basic mode that is synchronous mode and self synchronous mode. Real random numbers are non-deterministic. R-box (random box) based on the dynamic properties and it performs the stochastic transformation of data that can be used effectively meet the challenges of information is protected from international destructive impacts. In this paper, a new implementation of stochastic transformation will be proposed.

Zeros of Bargmann Analytic Representation in the Complex Plane

The paper contains an investigation of zeros Of Bargmann analytic representation. A brief introduction to Harmonic oscillator formalism is given. The Bargmann analytic representation has been studied. The zeros of Bargmann analytic function are considered. The Q or Husimi functions are introduced. The The Bargmann functions and the Husimi functions have the same zeros. The Bargmann functions f(z) have exactly q zeros. The evolution time of the zeros μn are discussed. Various examples have been given.

Sensitivity Analysis of Real-Time Systems

Verification of real-time software systems can be expensive in terms of time and resources. Testing is the main method of proving correctness but has been shown to be a long and time consuming process. Everyday engineers are usually unwilling to adopt formal approaches to correctness because of the overhead associated with developing their knowledge of such techniques. Performance modelling techniques allow systems to be evaluated with respect to timing constraints. This paper describes PARTES, a framework which guides the extraction of performance models from programs written in an annotated subset of C.

Some Geodesics in Open Surfaces Classified by Clairaut's Relation

In this paper, we studied some properties of geodesic on some open surfaces: Hyperboloid, Paraboloid and Funnel Surface. Geodesic equation in the v-Clairaut parameterization was calculated and reduced to definite integral. Some geodesics on some open surfaces as mention above were classified by Clairaut's relation.

Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

Iterative Solutions to Some Linear Matrix Equations

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

Estimation of Bayesian Sample Size for Binomial Proportions Using Areas P-tolerance with Lowest Posterior Loss

This paper uses p-tolerance with the lowest posterior loss, quadratic loss function, average length criteria, average coverage criteria, and worst outcome criterion for computing of sample size to estimate proportion in Binomial probability function with Beta prior distribution. The proposed methodology is examined, and its effectiveness is shown.

A New Heuristic Approach for the Large-Scale Generalized Assignment Problem

This paper presents a heuristic approach to solve the Generalized Assignment Problem (GAP) which is NP-hard. It is worth mentioning that many researches used to develop algorithms for identifying the redundant constraints and variables in linear programming model. Some of the algorithms are presented using intercept matrix of the constraints to identify redundant constraints and variables prior to the start of the solution process. Here a new heuristic approach based on the dominance property of the intercept matrix to find optimal or near optimal solution of the GAP is proposed. In this heuristic, redundant variables of the GAP are identified by applying the dominance property of the intercept matrix repeatedly. This heuristic approach is tested for 90 benchmark problems of sizes upto 4000, taken from OR-library and the results are compared with optimum solutions. Computational complexity is proved to be O(mn2) of solving GAP using this approach. The performance of our heuristic is compared with the best state-ofthe- art heuristic algorithms with respect to both the quality of the solutions. The encouraging results especially for relatively large size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems.

A New Condition for Conflicting Bifuzzy Sets Based On Intuitionistic Evaluation

Fuzzy sets theory affirmed that the linguistic value for every contraries relation is complementary. It was stressed in the intuitionistic fuzzy sets (IFS) that the conditions for contraries relations, which are the fuzzy values, cannot be greater than one. However, complementary in two contradict phenomena are not always true. This paper proposes a new idea condition for conflicting bifuzzy sets by relaxing the condition of intuitionistic fuzzy sets. Here, we will critically forward examples using triangular fuzzy number in formulating a new condition for conflicting bifuzzy sets (CBFS). Evaluation of positive and negative in conflicting phenomena were calculated concurrently by relaxing the condition in IFS. The hypothetical illustration showed the applicability of the new condition in CBFS for solving non-complement contraries intuitionistic evaluation. This approach can be applied to any decision making where conflicting is very much exist.

A New Quadrature Rule Derived from Spline Interpolation with Error Analysis

We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.

Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach

In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.

A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation

In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.

Skolem Sequences and Erdosian Labellings of m Paths with 2 and 3 Vertices

Assume that we have m identical graphs where the graphs consists of paths with k vertices where k is a positive integer. In this paper, we discuss certain labelling of the m graphs called c-Erdösian for some positive integers c. We regard labellings of the vertices of the graphs by positive integers, which induce the edge labels for the paths as the sum of the two incident vertex labels. They have the property that each vertex label and edge label appears only once in the set of positive integers {c, . . . , c+6m- 1}. Here, we show how to construct certain c-Erdösian of m paths with 2 and 3 vertices by using Skolem sequences.