The Study of Increasing Environmental Temperature on the Dynamical Behaviour of a Prey-Predator System: A Model

It is well recognized that the green house gases such as Chlorofluoro Carbon (CFC), CH4, CO2 etc. are responsible directly or indirectly for the increase in the average global temperature of the Earth. The presence of CFC is responsible for the depletion of ozone concentration in the atmosphere due to which the heat accompanied with the sun rays are less absorbed causing increase in the atmospheric temperature of the Earth. The gases like CH4 and CO2 are also responsible for the increase in the atmospheric temperature. The increase in the temperature level directly or indirectly affects the dynamics of interacting species systems. Therefore, in this paper a mathematical model is proposed and analysed using stability theory to asses the effects of increasing temperature due to greenhouse gases on the survival or extinction of populations in a prey-predator system. A threshold value in terms of a stress parameter is obtained which determines the extinction or existence of populations in the underlying system.

Formation of (Ga,Mn)N Dilute Magnetic Semiconductor by Manganese Ion Implantation

Un-doped GaN film of thickness 1.90 mm, grown on sapphire substrate were uniformly implanted with 325 keV Mn+ ions for various fluences varying from 1.75 x 1015 - 2.0 x 1016 ions cm-2 at 3500 C substrate temperature. The structural, morphological and magnetic properties of Mn ion implanted gallium nitride samples were studied using XRD, AFM and SQUID techniques. XRD of the sample implanted with various ion fluences showed the presence of different magnetic phases of Ga3Mn, Ga0.6Mn0.4 and Mn4N. However, the compositions of these phases were found to be depended on the ion fluence. AFM images of non-implanted sample showed micrograph with rms surface roughness 2.17 nm. Whereas samples implanted with the various fluences showed the presence of nano clusters on the surface of GaN. The shape, size and density of the clusters were found to vary with respect to ion fluence. Magnetic moment versus applied field curves of the samples implanted with various fluences exhibit the hysteresis loops. The Curie temperature estimated from zero field cooled and field cooled curves for the samples implanted with the fluence of 1.75 x 1015, 1.5 x 1016 and 2.0 x 1016 ions cm-2 was found to be 309 K, 342 K and 350 K respectively.

On Fractional (k,m)-Deleted Graphs with Constrains Conditions

Let G be a graph of order n, and let k  2 and m  0 be two integers. Let h : E(G)  [0, 1] be a function. If e∋x h(e) = k holds for each x  V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e  E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e  E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G)  k + m + m k+1 , n  4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)}  n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

The First Ground Track Maintenance Manoeuvre of THEOS Spacecraft

THEOS is the first earth observation spacecraft of Thailand which was launched on the 1st October 2008 and is currently operated by GISTDA. The transfer phase has been performed by Astrium Flight Dynamics team leading to a hand over to GISTDA teams starting mid-October 2008. The THEOS spacecraft-s orbit is LEO and has the same repetitivity (14+5/26) as the SPOT spacecraft, i.e. the same altitude of 822 km but it has a different mean local solar time (LST). Ground track maintenance manoeuvres are performed to maintain the ground track within a predefined control band around the reference ground track and the band is ±40 km for THEOS spacecraft. This paper presents the first ground track maintenance manoeuvre of THEOS spacecraft and the detailed results. In addition, it also includes one and a half year of operation as seen by GISTDA operators. It finally describes the foreseenable activities for the next orbit control manoeuvre (OCM) preparation.

Information Measures Based on Sampling Distributions

Information theory and Statistics play an important role in Biological Sciences when we use information measures for the study of diversity and equitability. In this communication, we develop the link among the three disciplines and prove that sampling distributions can be used to develop new information measures. Our study will be an interdisciplinary and will find its applications in Biological systems.

The Sizes of Large Hierarchical Long-Range Percolation Clusters

We study a long-range percolation model in the hierarchical lattice ΩN of order N where probability of connection between two nodes separated by distance k is of the form min{αβ−k, 1}, α ≥ 0 and β > 0. The parameter α is the percolation parameter, while β describes the long-range nature of the model. The ΩN is an example of so called ultrametric space, which has remarkable qualitative difference between Euclidean-type lattices. In this paper, we characterize the sizes of large clusters for this model along the line of some prior work. The proof involves a stationary embedding of ΩN into Z. The phase diagram of this long-range percolation is well understood.

Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters

In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.

A Global Condition for the Triviality of an Almost Split Quaternionic Structure on Split Complex Manifolds

Let M be an almost split quaternionic manifold on which its almost split quaternionic structure is defined by a three dimensional subbundle V of ( T M) T (M) * Ôèù and {F,G,H} be a local basis for V . Suppose that the (global) (1, 2) tensor field defined[V ,V ]is defined by [V,V ] = [F,F]+[G,G] + [H,H], where [,] denotes the Nijenhuis bracket. In ref. [7], for the almost split-hypercomplex structureH = J α,α =1,2,3, and the Obata connection ÔêçH vanishes if and only if H is split-hypercomplex. In this study, we give a prof, in particular, prove that if either M is a split quaternionic Kaehler manifold, or if M is a splitcomplex manifold with almost split-complex structure F , then the vanishing [V ,V ] is equivalent to that of all the Nijenhuis brackets of {F,G,H}. It follows that the bundle V is trivial if and only if [V ,V ] = 0 .

Multiple Periodic Solutions for a Delayed Predator-prey System on Time Scales

This paper is devoted to a delayed periodic predatorprey system with non-monotonic numerical response on time scales. With the help of a continuation theorem based on coincidence degree theory, we establish easily verifiable criteria for the existence of multiple periodic solutions. As corollaries, some applications are listed. In particular, our results improve and generalize some known ones.

Dengue Transmission Model between Infantand Pregnant Woman with Antibody

Dengue, a disease found in most tropical and subtropical areas of the world. It has become the most common arboviral disease of humans. This disease is caused by any of four serotypes of dengue virus (DEN1-DEN4). In many endemic countries, the average age of getting dengue infection is shifting upwards, dengue in pregnancy and infancy are likely to be encountered more frequently. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the pregnant, infant human and the vector populations. The stability of each equilibrium point is given. The epidemic dynamic is discussed. Moreover, the numerical results are shown for difference values of dengue antibody.

A Modified Inexact Uzawa Algorithm for Generalized Saddle Point Problems

In this note, we discuss the convergence behavior of a modified inexact Uzawa algorithm for solving generalized saddle point problems, which is an extension of the result obtained in a recent paper [Z.H. Cao, Fast Uzawa algorithm for generalized saddle point problems, Appl. Numer. Math., 46 (2003) 157-171].

Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.

Electrical Properties of n-CdO/p-Si Heterojunction Diode Fabricated by Sol Gel

n-CdO/p-Si heterojunction diode was fabricated using sol-gel spin coating technique which is a low cost and easily scalable method for preparing of semiconductor films. The structural and morphological properties of CdO film were investigated. The X-ray diffraction (XRD) spectra indicated that the film was of polycrystalline nature. The scanning electron microscopy (SEM) images indicate that the surface morphology CdO film consists of the clusters formed with the coming together of the nanoparticles. The electrical characterization of Au/n-CdO/p–Si/Al heterojunction diode was investigated by current-voltage. The ideality factor of the diode was found to be 3.02 for room temperature. The reverse current of the diode strongly increased with illumination intensity of 100 mWcm-2 and the diode gave a maximum open circuit voltage Voc of 0.04 V and short-circuits current Isc of 9.92×10-9 A.

Geographic Profiling Based on Multi-point Centrography with K-means Clustering

Geographic Profiling has successfully assisted investigations for serial crimes. Considering the multi-cluster feature of serial criminal spots, we propose a Multi-point Centrography model as a natural extension of Single-point Centrography for geographic profiling. K-means clustering is first performed on the data samples and then Single-point Centrography is adopted to derive a probability distribution on each cluster. Finally, a weighted combinations of each distribution is formed to make next-crime spot prediction. Experimental study on real cases demonstrates the effectiveness of our proposed model.

Advanced Gronwall-Bellman-Type Integral Inequalities and Their Applications

In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral inequalities with mixed time delays are established. These inequalities can be used as handy tools to research stability problems of delayed differential and integral dynamic systems. As applications, based on these new established inequalities, some p-stable results of a integro-differential equation are also given. Two numerical examples are presented to illustrate the validity of the main results.

Computations of Bezier Geodesic-like Curves on Spheres

It is an important problem to compute the geodesics on a surface in many fields. To find the geodesics in practice, however, the traditional discrete algorithms or numerical approaches can only find a list of discrete points. The first author proposed in 2010 a new, elegant and accurate method, the geodesic-like method, for approximating geodesics on a regular surface. This paper will present by use of this method a computation of the Bezier geodesic-like curves on spheres.

Revealing Nonlinear Couplings between Oscillators from Time Series

Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.

Preconditioned Jacobi Method for Fuzzy Linear Systems

A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

N-Sun Decomposition of Complete, Complete Bipartite and Some Harary Graphs

Graph decompositions are vital in the study of combinatorial design theory. A decomposition of a graph G is a partition of its edge set. An n-sun graph is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper, we define n-sun decomposition of some even order graphs with a perfect matching. We have proved that the complete graph K2n, complete bipartite graph K2n, 2n and the Harary graph H4, 2n have n-sun decompositions. A labeling scheme is used to construct the n-suns.