Abstract: In this paper, we propose a Connect6 solver which
adopts a hybrid approach based on a tree-search algorithm and image
processing techniques. The solver must deal with the complicated
computation and provide high performance in order to make real-time
decisions. The proposed approach enables the solver to be
implemented on a single Spartan-6 XC6SLX45 FPGA produced by
XILINX without using any external devices. The compact
implementation is achieved through image processing techniques to
optimize a tree-search algorithm of the Connect6 game. The tree
search is widely used in computer games and the optimal search brings
the best move in every turn of a computer game. Thus, many
tree-search algorithms such as Minimax algorithm and artificial
intelligence approaches have been widely proposed in this field.
However, there is one fundamental problem in this area; the
computation time increases rapidly in response to the growth of the
game tree. It means the larger the game tree is, the bigger the circuit
size is because of their highly parallel computation characteristics.
Here, this paper aims to reduce the size of a Connect6 game tree using
image processing techniques and its position symmetric property. The
proposed solver is composed of four computational modules: a
two-dimensional checkmate strategy checker, a template matching
module, a skilful-line predictor, and a next-move selector. These
modules work well together in selecting next moves from some
candidates and the total amount of their circuits is small. The details of
the hardware design for an FPGA implementation are described and
the performance of this design is also shown in this paper.