Study of Structural and Electronic Properties of Ternary PdMnGe Half-Heusler Alloy

This study deals with the structural and electronic properties of ternary PdMnGe Half-Heusler alloy using the full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT) as implemented in the WIEN2k package, within the framework of generalized gradient approximation (GGA). Structural parameters, total and partial densities of states were also analyzed. The obtained result shows that the studied material is metallic in GGA treatment. The elastic constants (Cij) show that our compound is ductile, stiff and anisotropic.

Effect of Spatially Correlated Disorder on Electronic Transport Properties of Aperiodic Superlattices (GaAs/AlxGa1-xAs)

We examine the electronic transport properties in AlxGa1-xAs/GaAs superlattices. Using the transfer-matrix technique and the exact Airy function formalism, we investigate theoretically the effect of structural parameters on the electronic energy spectra of trimer thickness barrier (TTB). Our numerical calculations showed that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the resonant tunneling time (RTT) is of the order of several femtoseconds.