Similarity Measure Functions for Strategy-Based Biometrics

Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algorithm optimized for a particular biometric application. In this paper we propose a tailored similarity measure function for behavioral biometric systems based on the expert knowledge of the feature level data in the domain. We compare performance of a proposed matching algorithm to that of other well known similarity distance functions and demonstrate its superiority with respect to the chosen domain.

Game Skill Measure for Mixed Games

Games can be classified as games of skill, games of chance or otherwise be classified as mixed. This paper deals with the topic of scientifically classifying mixed games as more reliant on elements of chance or elements of skill and ways to scientifically measure the amount of skill involved. This is predominantly useful for classification of games as legal or illegal in deferent jurisdictions based on the local gaming laws. We propose a novel measure of skill to chance ratio called the Game Skill Measure (GSM) and utilize it to calculate the skill component of a popular variant of Poker.