Manufacturing Dispersions Based Simulation and Synthesis of Design Tolerances

The objective of this work which is based on the approach of simultaneous engineering is to contribute to the development of a CIM tool for the synthesis of functional design dimensions expressed by average values and tolerance intervals. In this paper, the dispersions method known as the Δl method which proved reliable in the simulation of manufacturing dimensions is used to develop a methodology for the automation of the simulation. This methodology is constructed around three procedures. The first procedure executes the verification of the functional requirements by automatically extracting the functional dimension chains in the mechanical sub-assembly. Then a second procedure performs an optimization of the dispersions on the basis of unknown variables. The third procedure uses the optimized values of the dispersions to compute the optimized average values and tolerances of the functional dimensions in the chains. A statistical and cost based approach is integrated in the methodology in order to take account of the capabilities of the manufacturing processes and to distribute optimal values among the individual components of the chains.