Possibilities of Mathematical Modelling of Explosive Substance Aerosol and Vapour Dispersion in the Atmosphere

The paper deals with the possibilities of modelling vapour propagation of explosive substances in the FLUENT software. With regard to very low tensions of explosive substance vapours the experiment has been verified as exemplified by mononitrotoluene. Either constant or time variable meteorological conditions have been used for calculation. Further, it has been verified that the eluent source may be time-dependent and may reflect a real situation or the liberation rate may be constant. The execution of the experiment as well as evaluation were clear and it could also be used for modelling vapour and aerosol propagation of selected explosive substances in the atmospheric boundary layer.

Numerical Analysis of Hydrogen Transport using a Hydrogen-Enhanced Localized Plasticity Mechanism

In this study, the hydrogen transport phenomenon was numerically evaluated by using hydrogen-enhanced localized plasticity (HELP) mechanisms. Two dominant governing equations, namely, the hydrogen transport model and the elasto-plastic model, were introduced. In addition, the implicitly formulated equations of the governing equations were implemented into ABAQUS UMAT user-defined subroutines. The simulation results were compared to published results to validate the proposed method.

3 State Current Mode of a Grid Connected PV Converter

Nowadays in applications of renewable energy sources it is important to develop powerful and energy-saving photovoltaic converters and to keep the prescriptions of the standards. In grid connected PV converters the obvious solution to increase the efficiency is to reduce the switching losses. Our new developed control method reduces the switching losses and keeps the limitations of the harmonic distortion standards. The base idea of the method is the utilization of 3-state control causing discontinuous current mode at low input power. In the following sections the control theory, the realizations and the simulation results are presented.

An Extension of Multi-Layer Perceptron Based on Layer-Topology

There are a lot of extensions made to the classic model of multi-layer perceptron (MLP). A notable amount of them has been designed to hasten the learning process without considering the quality of generalization. The paper proposes a new MLP extension based on exploiting topology of the input layer of the network. Experimental results show the extended model to improve upon generalization capability in certain cases. The new model requires additional computational resources to compare to the classic model, nevertheless the loss in efficiency isn-t regarded to be significant.

Performance Analysis of a Flexible Manufacturing Line Operated Under Surplus-based Production Control

In this paper we present our results on the performance analysis of a multi-product manufacturing line. We study the influence of external perturbations, intermediate buffer content and the number of manufacturing stages on the production tracking error of each machine in the multi-product line operated under a surplusbased production control policy. Starting by the analysis of a single machine with multiple production stages (one for each product type), we provide bounds on the production error of each stage. Then, we extend our analysis to a line of multi-stage machines, where similarly, bounds on each production tracking error for each product type, as well as buffer content are obtained. Details on performance of the closed-loop flow line model are illustrated in numerical simulations.

Security Engine Management of Router based on Security Policy

Security management has changed from the management of security equipments and useful interface to manager. It analyzes the whole security conditions of network and preserves the network services from attacks. Secure router technology has security functions, such as intrusion detection, IPsec(IP Security) and access control, are applied to legacy router for secure networking. It controls an unauthorized router access and detects an illegal network intrusion. This paper relates to a security engine management of router based on a security policy, which is the definition of security function against a network intrusion. This paper explains the security policy and designs the structure of security engine management framework.

A Message Passing Implementation of a New Parallel Arrangement Algorithm

This paper describes a new algorithm of arrangement in parallel, based on Odd-Even Mergesort, called division and concurrent mixes. The main idea of the algorithm is to achieve that each processor uses a sequential algorithm for ordering a part of the vector, and after that, for making the processors work in pairs in order to mix two of these sections ordered in a greater one, also ordered; after several iterations, the vector will be completely ordered. The paper describes the implementation of the new algorithm on a Message Passing environment (such as MPI). Besides, it compares the obtained experimental results with the quicksort sequential algorithm and with the parallel implementations (also on MPI) of the algorithms quicksort and bitonic sort. The comparison has been realized in an 8 processors cluster under GNU/Linux which is running on a unique PC processor.

Cooperative Multi Agent Soccer Robot Team

This paper introduces our first efforts of developing a new team for RoboCup Middle Size Competition. In our robots we have applied omni directional based mobile system with omnidirectional vision system and fuzzy control algorithm to navigate robots. The control architecture of MRL middle-size robots is a three layered architecture, Planning, Sequencing, and Executing. It also uses Blackboard system to achieve coordination among agents. Moreover, the architecture should have minimum dependency on low level structure and have a uniform protocol to interact with real robot.

Finite Element Study on Corono-Radicular Restored Premolars

Restoration of endodontically treated teeth is a common problem in dentistry, related to the fractures occurring in such teeth and to concentration of forces little information regarding variation of basic preparation guidelines in stress distribution has been available. To date, there is still no agreement in the literature about which material or technique can optimally restore endodontically treated teeth. The aim of the present study was to evaluate the influence of the core height and restoration materials on corono-radicular restored upper first premolar. The first step of the study was to achieve 3D models in order to analyze teeth, dowel and core restorations and overlying full ceramic crowns. The FEM model was obtained by importing the solid model into ANSYS finite element analysis software. An occlusal load of 100 N was conducted, and stresses occurring in the restorations, and teeth structures were calculated. Numerical simulations provide a biomechanical explanation for stress distribution in prosthetic restored teeth. Within the limitations of the present study, it was found that the core height has no important influence on the stress generated in coronoradicular restored premolars. It can be drawn that the cervical regions of the teeth and restorations were subjected to the highest stress concentrations.

Computer Proven Correctness of the Rabin Public-Key Scheme

We decribe a formal specification and verification of the Rabin public-key scheme in the formal proof system Is-abelle/HOL. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. The analysis presented uses a given database to prove formal properties of our implemented functions with computer support. Thema in task in designing a practical formalization of correctness as well as security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as eficient formal proofs. This yields the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Consequently, we get reliable proofs with a minimal error rate augmenting the used database. This provides a formal basis for more computer proof constructions in this area.

The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Formula for

Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max) cultivation, however the production is low. The use of acid tolerant soybean and acidaluminium tolerant nitrogen-fixing bacteria formula was an alternative way to increase soybean productivity on acid soils. Bradyrhizobium japonicum is one of the nitrogen fixing bacteria which can symbiose with soybean plants through root nodule formation. Most of the nitrogen source required by soybean plants can be provided by this symbiosis. This research was conducted to study the influence of acid-aluminium tolerant B. japonicum strain BJ 11 formula using peat as carrier on growth of Tanggamus and Anjasmoro cultivar soybean planted on acid soil fields (pH 5.0- 5.5). The results showed that the inoculant was able to increase the growth and production of soybean which were grown on fields acid soil at Sukadana (Lampung) and Tanah Laut (South Kalimantan), Indonesia.

Laser Transmission through Vegetative Material

The dynamic speckle or biospeckle is an interference phenomenon generated at the reflection of a coherent light by an active surface or even by a particulate or living body surface. The above mentioned phenomenon gave scientific support to a method named biospeckle which has been employed to study seed viability, biological activity, tissue senescence, tissue water content, fruit bruising, etc. Since the above mentioned method is not invasive and yields numerical values, it can be considered for possible automation associated to several processes, including selection and sorting. Based on these preliminary considerations, this research work proposed to study the interaction of a laser beam with vegetative samples by measuring the incident light intensity and the transmitted light beam intensity at several vegetative slabs of varying thickness. Tests were carried on fifteen slices of apple tissue divided into three thickness groups, i.e., 4 mm, 5 mm, 18 mm and 22 mm. A diode laser beam of 10mW and 632 nm wavelength and a Samsung digital camera were employed to carry the tests. Outgoing images were analyzed by comparing the gray gradient of a fixed image column of each image to obtain a laser penetration scale into the tissue, according to the slice thickness.

Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control

The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.

The Future of Electronic Money

The history of money is described in relationship to the history of computing. With the transformation and acceptance of money as information, major challenges to the security of money have involved engineering, computer science, and management. Research opportunities and challenges are described as money continues its transformation into information.

Biodiesel Production over nano-MgO Supported on Titania

Nano-MgO was successfully deposited on titania using deposition-precipitation method. The catalyst produced was characterised using FTIR, XRD, BET and XRF and its activity was tested on the transesterification reaction of soybean oil to biodiesel. The catalyst activity improved when the reaction temperature was increasedfrom 150 and 225 OC. It was also observed that increasing the reaction time above 1h had no significant benefit on conversion. The stability fixed MgO on TiO2 was investigated using XRF and ICP-OES. It was observed that MgO loss during the reaction was between 0.5-2.3 percent and that there was no correlation between the reaction temperature and the MgO loss.

Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise

In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.

Analyzing Artificial Emotion in Game Characters Using Soft Computing

This paper describes a simulation model for analyzing artificial emotion injected to design the game characters. Most of the game storyboard is interactive in nature and the virtual characters of the game are equipped with an individual personality and dynamic emotion value which is similar to real life emotion and behavior. The uncertainty in real expression, mood and behavior is also exhibited in game paradigm and this is focused in the present paper through a fuzzy logic based agent and storyboard. Subsequently, a pheromone distribution or labeling is presented mimicking the behavior of social insects.

Qmulus – A Cloud Driven GPS Based Tracking System for Real-Time Traffic Routing

This paper presents Qmulus- a Cloud Based GPS Model. Qmulus is designed to compute the best possible route which would lead the driver to the specified destination in the shortest time while taking into account real-time constraints. Intelligence incorporated to Qmulus-s design makes it capable of generating and assigning priorities to a list of optimal routes through customizable dynamic updates. The goal of this design is to minimize travel and cost overheads, maintain reliability and consistency, and implement scalability and flexibility. The model proposed focuses on reducing the bridge between a Client Application and a Cloud service so as to render seamless operations. Qmulus-s system model is closely integrated and its concept has the potential to be extended into several other integrated applications making it capable of adapting to different media and resources.

A Collaborative Framework for Visual Modeling on Web 2.0

Cooperative visual modeling is more and more necessary in our complicated world. A collaborative environment which supports interactive operation and communication is required to increase work efficiency. We present a collaborative visual modeling framework which collaborative platform could be built on. On this platform, cooperation and communication is available for designers from different regions. This framework, which is different from other collaborative frameworks, contains a uniform message format, a message handling mechanism and other functions such as message pretreatment and Role-Communication-Token Access Control (RCTAC). We also show our implementation of this framework called Orchestra Designer, which support BPLE workflow modeling cooperatively online.

Security Threat and Countermeasure on 3G Network

Recent communications environment significantly expands the mobile environment. The popularization of smartphones with various mobile services has emerged, and smartphone users are rapidly increasing. Because of these symptoms, existing wired environment in a variety of mobile traffic entering to mobile network has threatened the stability of the mobile network. Unlike traditional wired infrastructure, mobile networks has limited radio resources and signaling procedures for complex radio resource management. So these traffic is not a problem in wired networks but mobile networks, it can be a threat. In this paper, we analyze the security threats in mobile networks and provide direction to solve it.