Abstract: Electricity prices have sophisticated features such as
high volatility, nonlinearity and high frequency that make forecasting
quite difficult. Electricity price has a volatile and non-random
character so that, it is possible to identify the patterns based on the
historical data. Intelligent decision-making requires accurate price
forecasting for market traders, retailers, and generation companies.
So far, many shallow-ANN (artificial neural networks) models have
been published in the literature and showed adequate forecasting
results. During the last years, neural networks with many hidden
layers, which are referred to as DNN (deep neural networks) have
been using in the machine learning community. The goal of this
study is to investigate electricity price forecasting performance of the
shallow-ANN and DNN models for the Turkish day-ahead electricity
market. The forecasting accuracy of the models has been evaluated
with publicly available data from the Turkish day-ahead electricity
market. Both shallow-ANN and DNN approach would give successful
result in forecasting problems. Historical load, price and weather
temperature data are used as the input variables for the models.
The data set includes power consumption measurements gathered
between January 2016 and December 2017 with one-hour resolution.
In this regard, forecasting studies have been carried out comparatively
with shallow-ANN and DNN models for Turkish electricity markets
in the related time period. The main contribution of this study
is the investigation of different shallow-ANN and DNN models
in the field of electricity price forecast. All models are compared
regarding their MAE (Mean Absolute Error) and MSE (Mean Square)
results. DNN models give better forecasting performance compare to
shallow-ANN. Best five MAE results for DNN models are 0.346,
0.372, 0.392, 0,402 and 0.409.
Abstract: Load forecasting has become crucial in recent years
and become popular in forecasting area. Many different power
forecasting models have been tried out for this purpose. Electricity
load forecasting is necessary for energy policies, healthy and reliable
grid systems. Effective power forecasting of renewable energy load
leads the decision makers to minimize the costs of electric utilities
and power plants. Forecasting tools are required that can be used
to predict how much renewable energy can be utilized. The purpose
of this study is to explore the effectiveness of LSTM-based neural
networks for estimating renewable energy loads. In this study, we
present models for predicting renewable energy loads based on
deep neural networks, especially the Long Term Memory (LSTM)
algorithms. Deep learning allows multiple layers of models to learn
representation of data. LSTM algorithms are able to store information
for long periods of time. Deep learning models have recently been
used to forecast the renewable energy sources such as predicting
wind and solar energy power. Historical load and weather information
represent the most important variables for the inputs within the
power forecasting models. The dataset contained power consumption
measurements are gathered between January 2016 and December
2017 with one-hour resolution. Models use publicly available data
from the Turkish Renewable Energy Resources Support Mechanism.
Forecasting studies have been carried out with these data via deep
neural networks approach including LSTM technique for Turkish
electricity markets. 432 different models are created by changing
layers cell count and dropout. The adaptive moment estimation
(ADAM) algorithm is used for training as a gradient-based optimizer
instead of SGD (stochastic gradient). ADAM performed better than
SGD in terms of faster convergence and lower error rates. Models
performance is compared according to MAE (Mean Absolute Error)
and MSE (Mean Squared Error). Best five MAE results out of
432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting
performance of the proposed LSTM models gives successful results
compared to literature searches.