Finite Time Symplectic Synchronization between Two Different Chaotic Systems

In this paper, the finite-time symplectic synchronization between two different chaotic systems is investigated. Based on the finite-time stability theory, a simple adaptive feedback scheme is proposed to realize finite-time symplectic synchronization for the Lorenz and L¨u systems. Numerical examples are provided to show the effectiveness of the proposed method.

Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.