Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER

The bit error rate (BER) performance for ultra-wide band (UWB) indoor communication with impact of metallic furniture is investigated. The impulse responses of different indoor environments for any transmitter and receiver location are computed by shooting and bouncing ray/image and inverse Fourier transform techniques. By using the impulse responses of these multipath channels, the BER performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Numerical results have shown that the multi-path effect by the metallic cabinets is an important factor for BER performance. Also the outage probability for the UWB multipath environment with metallic cabinets is more serious (about 18%) than with wooden cabinets. Finally, it is worth noting that in these cases the present work provides not only comparative information but also quantitative information on the performance reduction.

Electromagnetic Imaging of Inhomogeneous Dielectric Cylinders Buried in a Slab Mediumby TE Wave Illumination

The electromagnetic imaging of inhomogeneous dielectric cylinders buried in a slab medium by transverse electric (TE) wave illumination is investigated. Dielectric cylinders of unknown permittivities are buried in second space and scattered a group of unrelated waves incident from first space where the scattered field is recorded. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. Good reconstruction is obtained even in the presence of additive Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.