Performance Analysis of a WiMax/Wi-Fi System Whilst Streaming a Video Conference Application

WiMAX and Wi-Fi are considered as the promising broadband access solutions for wireless MAN’s and LANs, respectively. In the recent works WiMAX is considered suitable as a backhaul service to connect multiple dispersed Wi-Fi ‘hotspots’. Hence a new integrated WiMAX/Wi-Fi architecture has been proposed in literatures. In this paper the performance of an integrated WiMAX/Wi-Fi network has been investigated by streaming a video conference application. The difference in performance between the two protocols is compared with respect to video conferencing. The Heterogeneous network was simulated in the OPNET simulator.

Effect of Flaying Capacitors on Improving the 4 Level Three-Cell Inverter

With the rapid advanced of technology, the industrial processes become increasingly demanding, from the point of view, power quality and controllability. The advent of multi levels inverters responds partially to these requirements. But actually, the new generation of multi-cells inverters permits to reach more performances, since, it offers more voltage levels. The disadvantage in the increase of voltage levels by the number of cells in cascades is on account of series igbts synchronisation loss, from where, a limitation of cells in cascade to 4. Regarding to these constraints, a new topology is proposed in this paper, which increases the voltage levels of the three-cell inverter from 4 to 8; with the same number of igbts, and using less stored energy in the flaying capacitors. The details of operation and modelling of this new inverter structure are also presented, then tested thanks to a three phase induction motor. KeywordsFlaying capacitors, Multi-cells inverter, pwm, switchers, modelling.

A Systems Modeling Approach to Support Environmentally Sustainable Business Development in Manufacturing SMEs

Small and Medium Sized Enterprises (SMEs) play an important role in many economies. In New Zealand, for example, 97% of all manufacturing companies employ less than 100 staff, and generate the predominant part of this industry sector-s economic output. Manufacturing SMEs as a group also have a significant impact on the environment. This situation is similar in many developed economies, including the European Union. Sustainable economic development therefore needs to strongly consider the role of manufacturing SMEs, who generally find it challenging to move towards more environmentally friendly business practices. This paper presents a systems thinking approach to modelling and understanding the factors which have an influence on the successful uptake of environmental practices in small and medium sized manufacturing companies. It presents a number of causal loop diagrams which have been developed based on primary action research, and a thorough understanding of the literature in this area. The systems thinking model provides the basis for further development of a strategic framework for the successful uptake of environmental innovation in manufacturing SMEs.

Optical Limiting Characteristics of Core-Shell Nanoparticles

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Sufficiency Economy: A Contribution to Economic Development

The Philosophy of Sufficiency Economy, bestowed by His Majesty the King Bhumibol Adulyadej to the people of Thailand, highlights a balanced way of living. Three principles of moderation reasonableness, and immunity, along with the conditions for morality and knowledge, can be applied to any level of the society–from an individual to the nation. The Philosophy of Sufficiency Economy helps address the current development challenges, which are issues on institutions, environmental sustainability, human well-being, and the role of the government.

Weak Measurement Theory for Discrete Scales

With the increasing spread of computers and the internet among culturally, linguistically and geographically diverse communities, issues of internationalization and localization and becoming increasingly important. For some of the issues such as different scales for length and temperature, there is a well-developed measurement theory. For others such as date formats no such theory will be possible. This paper fills a gap by developing a measurement theory for a class of scales previously overlooked, based on discrete and interval-valued scales such as spanner and shoe sizes. The paper gives a theoretical foundation for a class of data representation problems.

Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.

A Model for Application of Knowledge Management in Public Organizations in Iran

This study examines knowledge management in the public organizations in Iran. The purpose of this article is to provide a conceptual framework for application of knowledge management in public organizations. The study indicates that an increasing tendency for implementation of knowledge management in organizations is emerging. Nonetheless knowledge management in public organizations is toddler and little has been done to bring the subject to use in the public sector. The globalization of change and popularization of some values like participation, citizen-orientation and knowledge-orientation in the new theories of public administration requires that the knowledge management is considered and attend to in the public sector. This study holds that a knowledge management framework for public organizations is different from this in the public sector, because public sector is stakeholder-dependent while the private is shareholder-dependent. Based on the research, we provide a conceptual model. The model proposed involves three factors: Organizational, knowledge citizens and contextual factors. The study results indicate these factors affect on knowledge management in public organizations in Iran.

Worker Behavior Interpretation for Flexible Production

This paper addresses the problem of recognizing and interpreting the behavior of human workers in industrial environments for the purpose of integrating humans in software controlled manufacturing environments. In this work we propose a generic concept in order to derive solutions for task-related manual production applications. Thus, we are able to use a versatile concept providing flexible components and being less restricted to a specific problem or application. We instantiate our concept in a spot welding scenario in which the behavior of a human worker is interpreted when performing a welding task with a hand welding gun. We acquire signals from inertial sensors, video cameras and triggers and recognize atomic actions by using pose data from a marker based video tracking system and movement data from inertial sensors. Recognized atomic actions are analyzed on a higher evaluation level by a finite state machine.

Greek Compounds: A Challenging Case for the Parsing Techniques of PC-KIMMO v.2

In this paper we describe the recognition process of Greek compound words using the PC-KIMMO software. We try to show certain limitations of the system with respect to the principles of compound formation in Greek. Moreover, we discuss the computational processing of phenomena such as stress and syllabification which are indispensable for the analysis of such constructions and we try to propose linguistically-acceptable solutions within the particular system.

Variable-Relation Criterion for Analysis of the Memristor

To judge whether the memristor can be interpreted as the fourth fundamental circuit element, we propose a variable-relation criterion of fundamental circuit elements. According to the criterion, we investigate the nature of three fundamental circuit elements and the memristor. From the perspective of variables relation, the memristor builds a direct relation between the voltage across it and the current through it, instead of a direct relation between the magnetic flux and the charge. Thus, it is better to characterize the memristor and the resistor as two special cases of the same fundamental circuit element, which is the memristive system in Chua-s new framework. Finally, the definition of memristor is refined according to the difference between the magnetic flux and the flux linkage.

Computer-aided Sequence Planning of Shearing Operations in Progressive Dies

This paper aims to study the methodology of building the knowledge of planning adequate punches in order to complete the task of strip layout for shearing processes, using progressive dies. The proposed methodology uses die design rules and characteristics of different types of punches to classify them into five groups: prior use (the punches must be used first), posterior use (must be used last), compatible use (may be used together), sequential use (certain punches must precede some others) and simultaneous use (must be used together). With these five groups of punches, the searching space of feasible designs will be greatly reduced, and superimposition becomes a more effective method of punch layout. The superimposition scheme will generate many feasible solutions, an evaluation function based on number of stages, moment balancing and strip stability is developed for helping designers to find better solutions.

Information Sharing to Transformation: Antecedents of Collaborative Networked Learning in Manufacturing

Collaborative networked learning (hereafter CNL) was first proposed by Charles Findley in his work “Collaborative networked learning: online facilitation and software support" as part of instructional learning for the future of the knowledge worker. His premise was that through electronic dialogue learners and experts could interactively communicate within a contextual framework to resolve problems, and/or to improve product or process knowledge. Collaborative learning has always been the forefront of educational technology and pedagogical research, but not in the mainstream of operations management. As a result, there is a large disparity in the study of CNL, and little is known about the antecedents of network collaboration and sharing of information among diverse employees in the manufacturing environment. This paper presents a model to bridge the gap between theory and practice. The objective is that manufacturing organizations will be able to accelerate organizational learning and sharing of information through various collaborative

Fatigue Life Consumption for Turbine Blades-Vanes Accelerated by Erosion-Contour Modification

A new mechanism responsible for structural life consumption due to resonant fatigue in turbine blades, or vanes, is presented and explained. A rotating blade or vane in a gas turbine can change its contour due to erosion and/or material build up, in any of these instances, the surface pressure distribution occurring on the suction and pressure sides of blades-vanes can suffer substantial modification of their pressure and temperatures envelopes and flow characteristics. Meanwhile, the relative rotation between the blade and duct vane while the pressurized gas flows and the consequent wake crossings, will induce a fluctuating thrust force or lift that will excite the blade. An actual totally used up set of vane-blade components in a HP turbine power stage in a gas turbine is analyzed. The blade suffered some material erosion mostly at the trailing edge provoking a peculiar surface pressure envelope which evolved as the relative position between the vane and the blade passed in front of each other. Interestingly preliminary modal analysis for this eroded blade indicates several natural frequencies within the aeromechanic power spectrum, moreover, the highest frequency component is 94% of one natural frequency indicating near resonant condition. Independently of other simultaneously occurring fatigue cycles (such as thermal, centrifugal stresses).

Redefining Field Experiences: Virtual Environments in Teacher Education

The explosion of interest in online gaming and virtual worlds is leading many universities to investigate possible educational applications of the new environments. In this paper we explore the possibilities of 3D online worlds for teacher education, particularly the field experience component. Drawing upon two pedagogical examples, we suggest that virtual simulations may, with certain limitations, create safe spaces that allow preservice teachers to adopt alternate identities and interact safely with the “other." In so doing they may become aware of the constructed nature of social categories and gain the essential pedagogical skill of perspective-taking. We suggest that, ultimately, the ability to be the principal creators of themselves in virtual environments can increase their ability to do the same in the real world.

Magnesium Alloy: A Biomaterial for Development of Degradation Rate Controllable Esophageal Stent

Magnesium alloy has been widely investigated as biodegradable cardiovascular stent and bone implant. Its application for biodegradable esophageal stenting remains unexplored. This paper reports the biodegradation behaviors of AZ31 magnesium alloy in artificial saliva and various types of beverage in vitro. Results show that the magnesium ion release rate of AZ31 in artificial saliva for a stent (2cm diameter, 10cm length at 50% stent surface coverage) is 43 times lower than the daily allowance of human body magnesium intakes. The degradation rates of AZ31 in different beverages could also be significantly different. These results suggest that the esophagus in nature is a less aggressive chemical environment for degradation of magnesium alloys. The significant difference in degradation rates of AZ31 in different beverages opens new opportunities for development of degradation controllable esophageal stent through customizing ingested beverages.

Experimental Determination of Large Strain Localization in Cut Steel Chips

Metal cutting is a severe plastic deformation process involving large strains, high strain rates, and high temperatures. Conventional analysis of the chip formation process is based on bulk material deformation disregarding the inhomogeneous nature of the material microstructure. A series of orthogonal cutting tests of AISI 1045 and 1144 steel were conducted which yielded similar process characteristics and chip formations. With similar shear angles and cut chip thicknesses, shear strains for both chips were found to range from 2.0 up to 2.8. The manganese-sulfide (MnS) precipitate in the 1144 steel has a very distinct and uniform shape which allows for comparison before and after chip formation. From close observations of MnS precipitates in the cut chips it is shown that the conventional approach underestimates plastic strains in metal cutting. Experimental findings revealed local shear strains around a value of 6. These findings and their implications are presented and discussed.

Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter

Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.

Metoprolol Tartrate-Ethylcellulose Tabletted Microparticles: Development of a Validated Invitro In-vivo Correlation

This study describes the methodology for the development of a validated in-vitro in-vivo correlation (IVIVC) for metoprolol tartrate modified release dosage forms with distinctive release rate characteristics. Modified release dosage forms were formulated by microencapsulation of metoprolol tartrate into different amounts of ethylcellulose by non-solvent addition technique. Then in-vitro and in-vivo studies were conducted to develop and validate level A IVIVC for metoprolol tartrate. The values of regression co-efficient (R2-values) for IVIVC of T2 and T3 formulations were not significantly (p

Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm

Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.