A Sociolinguistic Study of the Outcomes of Arabic-French Contact in the Algerian Dialect Tlemcen Speech Community as a Case Study

It is acknowledged that our style of speaking changes according to a wide range of variables such as gender, setting, the age of both the addresser and the addressee, the conversation topic, and the aim of the interaction. These differences in style are noticeable in monolingual and multilingual speech communities. Yet, they are more observable in speech communities where two or more codes coexist. The linguistic situation in Algeria reflects a state of bilingualism because of the coexistence of Arabic and French. Nevertheless, like all Arab countries, it is characterized by diglossia i.e. the concomitance of Modern Standard Arabic (MSA) and Algerian Arabic (AA), the former standing for the ‘high variety’ and the latter for the ‘low variety’. The two varieties are derived from the same source but are used to fulfil distinct functions that is, MSA is used in the domains of religion, literature, education and formal settings. AA, on the other hand, is used in informal settings, in everyday speech. French has strongly affected the Algerian language and culture because of the historical background of Algeria, thus, what can easily be noticed in Algeria is that everyday speech is characterized by code-switching from dialectal Arabic and French or by the use of borrowings. Tamazight is also very present in many regions of Algeria and is the mother tongue of many Algerians. Yet, it is not used in the west of Algeria, where the study has been conducted. The present work, which was directed in the speech community of Tlemcen-Algeria, aims at depicting some of the outcomes of the contact of Arabic with French such as code-switching, borrowing and interference. The question that has been asked is whether Algerians are aware of their use of borrowings or not. Three steps are followed in this research; the first one is to depict the sociolinguistic situation in Algeria and to describe the linguistic characteristics of the dialect of Tlemcen, which are specific to this city. The second one is concerned with data collection. Data have been collected from 57 informants who were given questionnaires and who have then been classified according to their age, gender and level of education. Information has also been collected through observation, and note taking. The third step is devoted to analysis. The results obtained reveal that most Algerians are aware of their use of borrowings. The present work clarifies how words are borrowed from French, and then adapted to Arabic. It also illustrates the way in which singular words inflect into plural. The results expose the main characteristics of borrowing as opposed to code-switching. The study also clarifies how interference occurs at the level of nouns, verbs and adjectives.

A 0.9 V, High-Speed, Low-Power Tunable Gain Current Mirror

A high-speed current mirror with low-power method of adjusting current gain is presented. The current mirror provides continuous gain adjustment; yet, its gain can simply be programmed digitally, as well. The structure features the ever interesting merits of linear-in-dB gain control scheme and low power/voltage operation. The performance of proposed structure is verified through the simulation in TSMC 0.18 µm CMOS Technology. The proposed tunable gain current mirror structure draws only 18 µW from 0.9 V power supply and can operate at high frequencies up to 550 MHz in the worst case condition of maximum gain setting.

Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings

In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.

Mathematical Expression for Machining Performance

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Crossover Memories and Code-Switching in the Narratives of Arabic-Hebrew and Hebrew-English Bilingual Adults in Israel

This study examines two bilingual phenomena in the narratives of Arabic Hebrew and Hebrew-English bilingual adults in Israel: CO memories and code-switching (CS). The study examined these phenomena in the context of autobiographical memory, using a cue word technique. Student experimenters held two sessions in the homes of the participants. In separate language sessions, the participant was asked to look first at each of 16 cue words and then to state a concrete memory. After stating the memory, participants reported whether their memories were in the same language of the experiment session or different. Memories were classified as ‘Crossovers’ (CO) or ‘Same Language’ (SL) according to participants' self-reports. Participants were also required to elaborate about the setting, interlocutors and other languages involved in the specific memory. Beyond replicating the procedure of cuing technique, one memory from a specific lifespan period was chosen per participant, and the participant was required to provide further details about it. For the more detailed memories, CS count was conducted. Both bilingual groups confirmed the Reminiscence Bump phenomenon, retrieving more memories in the 10-30 age period. CO memories prevailed in second language sessions (L2). Same language memories were more abundant in first language sessions (L1). Higher CS frequency was found in L2 sessions. Finally, as predicted, 'individual' CS was prevalent in L2 sessions, but 'community-based' CS was not higher in L1 sessions. The two bilingual measures in this study, crossovers, and CS came from different research traditions, the former from an experimental paradigm in the psychology of autobiographical memory based on self-reported judgments, the latter a behavioral measure from linguistics. This merger of approaches offers new insight into the field of bilingual autobiographical memory. In addition, the study attempted to shed light on the investigation of motivations for CS, beginning with Walters’ SPPL Model and concluding with a distinction between ‘community-based’ and individual motivations.

Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Cities Simulation and Representation in Locative Games from the Perspective of Cultural Studies

This work aims to analyze the locative structure used by the locative games of the company Niantic. To fulfill this objective, a literature review on the representation and simulation of cities was developed; interviews with Ingress players and playing Ingress. Relating these data, it was possible to deepen the relationship between the virtual and the real to create the simulation of cities and their cultural objects in locative games. Cities representation associates geo-location provided by the Global Positioning System (GPS), with augmented reality and digital image, and provides a new paradigm in the city interaction with its parts and real and virtual world elements, homeomorphic to real world. Bibliographic review of papers related to the representation and simulation study and their application in locative games was carried out and is presented in the present paper. The cities representation and simulation concepts in locative games, and how this setting enables the flow and immersion in urban space, are analyzed. Some examples of games are discussed for this new setting development, which is a mix of real and virtual world. Finally, it was proposed a Locative Structure for electronic games using the concepts of heterotrophic representations and isotropic representations conjoined with immediacy and hypermediacy.

Use and Relationship of Shell Nouns as Cohesive Devices in the Quality of Second Language Writing

The current study is a comparative analysis of the use of shell nouns as a cohesive device (CD) in an English for Second Language (ESL) setting in order to identify their use and relationship in the quality of second language (L2) writing. As these nouns were established to anticipate the meaning within, across or outside the text, their use has fascinated writing researchers. The corpus of the study included published articles from reputable journals and graduate students’ papers in order to analyze the frequency of shell nouns using “highly prevalent” nouns in the academic community, to identify the different lexicogrammatical patterns where these nouns occur and to the functions connected with these patterns. The result of the study implies that published authors used more shell nouns in their paper than graduate students. However, the functions of the different lexicogrammatical patterns for the frequently occurring shell nouns are somewhat similar. These results could help students in enhancing the cohesion of their text and in comprehending it.

Evaluating Damage Spectra for Steel Braced Frames Due to Near-Field and Far-Field Earthquakes

Recent ground motion records demonstrate that the near-field earthquakes have various properties compared to far-field earthquakes. In general, most of these properties are affected by an important phenomenon called ‘forward directivity’ in near-fault earthquakes. Measuring structural damages are one of the common activities administered after an earthquake. Predicting the amount of damage caused by the earthquake as well as determining the vulnerability of the structure is extremely significant. In order to measure the amount of structural damages, instead of calculating the acceleration and velocity spectrum, it is possible to use the damage spectra of the structure. The damage spectrum is a kind of nonlinear spectrum that is drawn by setting the nonlinear parameters related to the single degree of freedom structures and its dynamic analysis under the specific record and measuring damage of any structure. In this study, the damage spectra of steel structures have been drawn. For this purpose, different kinds of concentric and eccentric braced structures with various ductility coefficients in hard and soft soil under near-field and far-field ground motion records have been considered using the Krawinkler and Zohrei damage index. The results indicate that, by increasing the structures' fundamental period, the amount of damage increases under the near-field earthquakes compared to far-field earthquakes. In addition, by increasing the structure ductility, the amount of damage based on near-field and far-field earthquakes decreases noticeably. Furthermore, in concentric braced structures, the amount of damage under the near-field earthquakes is almost two times more than the amount of damage in eccentrically braced structures especially for fundamental periods larger than 0.6 s.

Accessible Facilities in Home Environment for Elderly Family Members in Sri Lanka

The world is facing several problems due to increasing elderly population. In Sri Lanka, along with the complexity of the modern society and structural and functional changes of the family, “caring for elders” seems as an emerging social problem. This situation may intensify as the county is moving into a middle income society. Seeking higher education and related career opportunities, and urban living in modern housing are new trends, through which several problems are generated. Among many issues related with elders, “lack of accessible and appropriate facilities in their houses as well as public buildings” can be identified as a major problem. This study argues that welfare facilities provided for the elderly people, particularly in the home environment, in the country are not adequate. Modern housing features such as bathrooms, pantries, lobbies, and leisure areas etc. are questionable as to whether they match with elders’ physical and mental needs. Consequently, elders have to face domestic accidents and many other difficulties within their living environments. Records of hospitals in the country also proved this fact. Therefore, this study tries to identify how far modern houses are suited with elders’ needs. The study further questioned whether “aging” is a considerable matter when people are buying, planning and renovating houses. A randomly selected sample of 50 houses were observed and 50 persons were interviewed around the Maharagama urban area in Colombo district to obtain primary data, while relevant secondary data and information were used to have a depth analysis. The study clearly found that none of the houses included to the sample are considering elders’ needs in planning, renovating, or arranging the home. Instead, most of the families were giving priority to the rich and elegant appearance and modern facilities of the houses. Particularly, to the bathrooms, pantry, large setting areas, balcony, parking slots for two vehicles, ad parapet walls with roller-gates are the main concerns. A significant factor found here is that even though, many children of the aged are in middle age and reaching their older years at present, they do not plan their future living within a safe and comfortable home, despite that they are hoping to spent the latter part of their lives in the their current homes. This fact highlights that not only the other responsible parts of the society, but also those who are reaching their older ages are ignoring the problems of the aged. At the same time, it was found that more than 80% of old parents do not like to stay at their children’s homes as the living environments in such modern homes are not familiar or convenient for them. Due to this context, the aged in Sri Lanka may have to be alone in their own homes due to current trend of society of migrating to urban living in modern houses. At the same time, current urban families who live in modern houses may have to face adding accessible facilities in their home environment, as current modern housing facilities may not be appropriate them for a better life in their latter part of life.

A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes

Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.

Evaluating the Factors Influencing the Efficiency and Usage of Public Sports Services in a Chinese Province

The efficiency of public sports service of prefecture-level cities in Zhejiang from 2008 to 2012 was evaluated by applying the DEA method, then its influencing factors were also analyzed through Tobit model. Upon analysis, the results revealed the following; (i) the change in average efficiency of public sports service in Zhejiang present a smooth uptrend and at a relatively high level from 2008 to 2012 (ii) generally, the productivity of public sports service in Zhejiang improved from 2008 to 2012, the productivity efficiency varied greatly in different years, and the regional difference of production efficiency increased. (iii) The correlations for urbanization rate, aging rate, per capita GDP and the population density were significantly positive with the public sports service efficiency in Zhejiang, of which the most significant was the aging rate. However, the population density and per capita GDP had less impact on the efficiency of public sports service in Zhejiang. In addition, whether the efficiency of public sports services in different areas in Zhejiang reciprocates to overall benefits in public wellbeing in both rural and urban settings is still arguable.

Modeling Influence on Petty Corruption Attitudes

Corruption is an influential and widespread problem. One part of it is so-called petty corruption, related to large-scale bribe giving by ordinary citizens trying to influence the works of public administration or public services. As it is with all means of corruption, petty corruption is related to the level of democracy (or administration efficiency) in a society. The developed model captures some of the factors related to corruptive behavior, as well as people’s attitude towards petty corruption. It has four basic elements: user’s perception of corruption in the society of interest, the influence of social interactions, the influence of penalizing mechanism, and influence of campaigns against petty corruption. The model is agent-based, developed in NetLogo, with a lot of random settings that provide a wider scope of responses. Interactions of different settings for variables of elements provide insight into the influence of each element on attitude towards petty corruption, as well as petty corruptive behavior.

Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform

A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.

The Folksongs of Jharkhand: An Intangible Cultural Heritage of Tribal India

Jharkhand is newly constituted 28th State in the eastern part of India which is known for the oldest settlement of the indigenous people. In the State of Jharkhand in which broadly three language family are found namely, Austric, Dravidian, and Indo-European. Ex-Mundari, kharia, Ho Santali come from the Austric Language family. Kurukh, Malto under Dravidian language family and Nagpuri Khorta etc. under Indo-European language family. There are 32 Indigenous Communities identified as Scheduled Tribe in the State of Jharkhand. Santhal, Munda, Kahria, Ho and Oraons are some of the major Tribe of the Jharkhand state. Jharkhand has a Rich Cultural heritage which includes Folk art, folklore, Folk Dance, Folk Music, Folk Songs for which diversity can been seen from place to place, season to season and all traditional Culture and practices. The languages as well as the songs are vulnerable to dominant culture and hence needed to be protected. The collection and documentation of these songs in their natural setting adds significant contribution to the conservation and propagation of the cultural elements. This paper reflects to bring out the Originality of the Collected Songs from remote areas of the plateau of Sothern Jharkhand as a rich intangible Cultural heritage of the Country. The research was done through participatory observation. In this research project more than 100 songs which were never documented before.

Managing Uncertainty in Unmanned Aircraft System Safety Performance Requirements Compliance Process

System Safety Regulations (SSR) are a central component to the airworthiness certification of Unmanned Aircraft Systems (UAS). There is significant debate on the setting of appropriate SSR for UAS. Putting this debate aside, the challenge lies in how to apply the system safety process to UAS, which lacks the data and operational heritage of conventionally piloted aircraft. The limited knowledge and lack of operational data result in uncertainty in the system safety assessment of UAS. This uncertainty can lead to incorrect compliance findings and the potential certification and operation of UAS that do not meet minimum safety performance requirements. The existing system safety assessment and compliance processes, as used for conventional piloted aviation, do not adequately account for the uncertainty, limiting the suitability of its application to UAS. This paper discusses the challenges of undertaking system safety assessments for UAS and presents current and envisaged research towards addressing these challenges. It aims to highlight the main advantages associated with adopting a risk based framework to the System Safety Performance Requirement (SSPR) compliance process that is capable of taking the uncertainty associated with each of the outputs of the system safety assessment process into consideration. Based on this study, it is made clear that developing a framework tailored to UAS, would allow for a more rational, transparent and systematic approach to decision making. This would reduce the need for conservative assumptions and take the risk posed by each UAS into consideration while determining its state of compliance to the SSR.