Outlier Pulse Detection and Feature Extraction for Wrist Pulse Analysis

Wrist pulse analysis for identification of health status is found in Ancient Indian as well as Chinese literature. The preprocessing of wrist pulse is necessary to remove outlier pulses and fluctuations prior to the analysis of pulse pressure signal. This paper discusses the identification of irregular pulses present in the pulse series and intricacies associated with the extraction of time domain pulse features. An approach of Dynamic Time Warping (DTW) has been utilized for the identification of outlier pulses in the wrist pulse series. The ambiguity present in the identification of pulse features is resolved with the help of first derivative of Ensemble Average of wrist pulse series. An algorithm for detecting tidal and dicrotic notch in individual wrist pulse segment is proposed.

Predicting Protein Interaction Sites Based on a New Integrated Radial Basis Functional Neural Network

Interactions among proteins are the basis of various life events. So, it is important to recognize and research protein interaction sites. A control set that contains 149 protein molecules were used here. Then 10 features were extracted and 4 sample sets that contained 9 sliding windows were made according to features. These 4 sample sets were calculated by Radial Basis Functional neutral networks which were optimized by Particle Swarm Optimization respectively. Then 4 groups of results were obtained. Finally, these 4 groups of results were integrated by decision fusion (DF) and Genetic Algorithm based Selected Ensemble (GASEN). A better accuracy was got by DF and GASEN. So, the integrated methods were proved to be effective.

Combining Bagging and Additive Regression

Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.

Judges System for Classifiers Specialization

In this paper we designed and implemented a new ensemble of classifiers based on a sequence of classifiers which were specialized in regions of the training dataset where errors of its trained homologous are concentrated. In order to separate this regions, and to determine the aptitude of each classifier to properly respond to a new case, it was used another set of classifiers built hierarchically. We explored a selection based variant to combine the base classifiers. We validated this model with different base classifiers using 37 training datasets. It was carried out a statistical comparison of these models with the well known Bagging and Boosting, obtaining significantly superior results with the hierarchical ensemble using Multilayer Perceptron as base classifier. Therefore, we demonstrated the efficacy of the proposed ensemble, as well as its applicability to general problems.

Combining Bagging and Boosting

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.

Meta Random Forests

Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.

An ensemble of Weighted Support Vector Machines for Ordinal Regression

Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM-s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach is comparable to state of the art kernel methods for ordinal regression. The ensemble method, which is straightforward to implement, provides a very good sensitivity-specificity trade-off for the highest and lowest rank.

A Trainable Neural Network Ensemble for ECG Beat Classification

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

A Survey: Clustering Ensembles Techniques

The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.

Ensemble Learning with Decision Tree for Remote Sensing Classification

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Ensembling Adaptively Constructed Polynomial Regression Models

The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.

Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection

We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.