Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON

Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.

Design of a Cost Effective Off-Grid Wind-Diesel Hybrid Power System in an Island of Bangladesh

Bangladesh is a developing country with large population. Demand of electrical energy is increasing day by day because of increasing population and industrialization. But due to limited resources, people here are suffering from power crisis problem which is considered as a major obstacle to the economic development. In most of the cases, it is extremely difficult to extend high tension transmission lines to some of the places that are separated from the mainland. Renewable energy is considered to be the right choice for providing clean energy to these remote settlements. This paper proposes a cost effective design of off-grid wind-diesel hybrid power system using combined heat and power (CHP) technology in a grid isolated island, Sandwip, Bangladesh. Design and simulation of the wind-diesel hybrid power system is performed considering different factors for the island Sandwip. Detailed economic analysis and comparison with solar PV system clearly reveals that wind-diesel hybrid power system can be a cost effective solution for the isolated island like Sandwip.

Modeling Cost Structure for Assessment Production Cost of Algal - Biofue

Algae-based fuel are considered a promising sources of clean energy, and because it has many advantages over traditional biofuel, research and business ventures have driven into developing and producing Algal-biofuel. But its production stages create a cost structure that it is not competitive with traditional fuels. Therefore, cost becomes the main obstacle in commercial production purpose. However, the present research which aims at using cost structure model, and designed MS-Dose program, to investigate the a mount of production cost and determined the parameter had great effect on it, second to measured the amount of contribution rate of algae in process the pollution by capturing Co2 from air . The result generated from the model shows that the production cost of biomass is between $0.137 /kg for 100 ha and $0.132 /kg for 500 ha which was less than cost of other studies, while gallon costs between $3.4 - 3.5, more than traditional sources of oil about $1 ,which regarded as a rate of contribution of algal in capturing CO2 from air.