Sperm Whale Signal Analysis: Comparison using the Auto Regressive model and the Daubechies 15 Wavelets Transform

This article presents the results using a parametric approach and a Wavelet Transform in analysing signals emitting from the sperm whale. The extraction of intrinsic characteristics of these unique signals emitted by marine mammals is still at present a difficult exercise for various reasons: firstly, it concerns non-stationary signals, and secondly, these signals are obstructed by interfering background noise. In this article, we compare the advantages and disadvantages of both methods: Auto Regressive models and Wavelet Transform. These approaches serve as an alternative to the commonly used estimators which are based on the Fourier Transform for which the hypotheses necessary for its application are in certain cases, not sufficiently proven. These modern approaches provide effective results particularly for the periodic tracking of the signal's characteristics and notably when the signal-to-noise ratio negatively effects signal tracking. Our objectives are twofold. Our first goal is to identify the animal through its acoustic signature. This includes recognition of the marine mammal species and ultimately of the individual animal (within the species). The second is much more ambitious and directly involves the intervention of cetologists to study the sounds emitted by marine mammals in an effort to characterize their behaviour. We are working on an approach based on the recordings of marine mammal signals and the findings from this data result from the Wavelet Transform. This article will explore the reasons for using this approach. In addition, thanks to the use of new processors, these algorithms once heavy in calculation time can be integrated in a real-time system.

On the Verification of Power Nap Associated with Stage 2 Sleep and Its Application

One of the most important causes of accidents is driver fatigue. To reduce the accidental rate, the driver needs a quick nap when feeling sleepy. Hence, searching for the minimum time period of nap is a very challenging problem. The purpose of this paper is twofold, i.e. to investigate the possible fastest time period for nap and its relationship with stage 2 sleep, and to develop an automatic stage 2 sleep detection and alarm device. The experiment for this investigation is designed with 21 subjects. It yields the result that waking up the subjects after getting into stage 2 sleep for 3-5 minutes can efficiently reduce the sleepiness. Furthermore, the automatic stage 2 sleep detection and alarm device yields the real-time detection accuracy of approximately 85% which is comparable with the commercial sleep lab system.

Selective Minterms Based Tabular Method for BDD Manipulations

The goal of this work is to describe a new algorithm for finding the optimal variable order, number of nodes for any order and other ROBDD parameters, based on a tabular method. The tabular method makes use of a pre-built backend database table that stores the ROBDD size for selected combinations of min-terms. The user uses the backend table and the proposed algorithm to find the necessary ROBDD parameters, such as best variable order, number of nodes etc. Experimental results on benchmarks are given for this technique.

Rural Connectivity Technologies Cost Analysis

Rural areas of Tanzania are still disadvantaged in terms of diffusion of IP-based services; this is due to lack of Information and Communication Technology (ICT) infrastructures, especially lack of connectivity. One of the limitations for connectivity problems in rural areas of Tanzania is the high cost to establish infrastructures for IP-based services [1-2]. However the cost of connectivity varies from one technology to the other and at the same time, the cost is also different from one operator (service provider) to another within the country. This paper presents development of software system to calculate cost of connectivity to rural areas of Tanzania. The system is developed to make an easy access of connectivity cost from different technologies and different operators. The development of the calculator follows the V-model software development lifecycle. The calculator is used to evaluate the economic viability of different technologies considered as being potential candidates to provide rural connectivity. In this paper, the evaluation is based on the techno-economic analysis approach.

Thermodynamic, Structural and Transport Properties of Molten Copper-Thallium Alloys

A self-association model has been used to understand the concentration dependence of free energy of mixing (GM), heat of mixing (HM), entropy of mixing (SM), activity (a) and microscopic structures, such as concentration fluctuation in long wavelength limit (Scc(0)) and Warren-Cowley short range order parameter ( 1 α )for Cu- Tl molten alloys at 1573K. A comparative study of surface tension of the alloys in the liquid state at that temperature has also been carried out theoretically as function of composition in the light of Butler-s model, Prasad-s model and quasi-chemical approach. Most of the computed thermodynamic properties have been found in agreement with the experimental values. The analysis reveals that the Cu-Tl molten alloys at 1573K represent a segregating system at all concentrations with moderate interaction. Surface tensions computed from different approaches have been found to be comparable to each other showing increment with the composition of copper.

RUPSec: An Extension on RUP for Developing Secure Systems - Requirements Discipline

The world is moving rapidly toward the deployment of information and communication systems. Nowadays, computing systems with their fast growth are found everywhere and one of the main challenges for these systems is increasing attacks and security threats against them. Thus, capturing, analyzing and verifying security requirements becomes a very important activity in development process of computing systems, specially in developing systems such as banking, military and e-business systems. For developing every system, a process model which includes a process, methods and tools is chosen. The Rational Unified Process (RUP) is one of the most popular and complete process models which is used by developers in recent years. This process model should be extended to be used in developing secure software systems. In this paper, the Requirement Discipline of RUP is extended to improve RUP for developing secure software systems. These proposed extensions are adding and integrating a number of Activities, Roles, and Artifacts to RUP in order to capture, document and model threats and security requirements of system. These extensions introduce a group of clear and stepwise activities to developers. By following these activities, developers assure that security requirements are captured and modeled. These models are used in design, implementation and test activitie

A Study on Cement-Based Composite Containing Polypropylene Fibers and Finely Ground Glass Exposed to Elevated Temperatures

High strength concrete has been used in situations where it may be exposed to elevated temperatures. Numerous authors have shown the significant contribution of polypropylene fiber to the spalling resistance of high strength concrete. When cement-based composite that reinforced by polypropylene fibers heated up to 170 °C, polypropylene fibers readily melt and volatilize, creating additional porosity and small channels in to the matrix that cause the poor structure and low strength. This investigation develops on the mechanical properties of mortar incorporating polypropylene fibers exposed to high temperature. Also effects of different pozzolans on strength behaviour of samples at elevated temperature have been studied. To reach this purpose, the specimens were produced by partial replacement of cement with finely ground glass, silica fume and rice husk ash as high reactive pozzolans. The amount of this replacement was 10% by weight of cement to find the effects of pozzolans as a partial replacement of cement on the mechanical properties of mortars. In this way, lots of mixtures with 0%, 0.5%, 1% and 1.5% of polypropylene fibers were cast and tested for compressive and flexural strength, accordance to ASTM standard. After that specimens being heated to temperatures of 300, 600 °C, respectively, the mechanical properties of heated samples were tested. Mechanical tests showed significant reduction in compressive strength which could be due to polypropylene fiber melting. Also pozzolans improve the mechanical properties of sampels.

The Use of Appeals in Green Printed Advertisements: A Case of Product Orientation and Organizational Image Orientation Ads

Despite the relatively large number of studies that have examined the use of appeals in advertisements, research on the use of appeals in green advertisements is still underdeveloped and needs to be investigated further, as it is definitely a tool for marketers to create illustrious ads. In this study, content analysis was employed to examine the nature of green advertising appeals and to match the appeals with the green advertisements. Two different types of green print advertisings, product orientation and organizational image orientation were used. Thirty highly educated participants with different backgrounds were asked individually to ascertain three appeals out of thirty-four given appeals found among forty real green advertisements. To analyze participant responses and to group them based on common appeals, two-step K-mean clustering is used. The clustering solution indicates that eye-catching graphics and imaginative appeals are highly notable in both types of green ads. Depressed, meaningful and sad appeals are found to be highly used in organizational image orientation ads, whereas, corporate image, informative and natural appeals are found to be essential for product orientation ads.

Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network

Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.

Motion Control of a 2-link Revolute Manipulator in an Obstacle-Ridden Workspace

In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented.

Software Digital Phase-locked Loop for Induction Motor Speed Control

This article deals to describe the simulation investigation of the digital phase locked loop implemented in software (SDPLL). SDPLL has been developed for speed drives of an induction motor in scalar strategy. A drive was implemented and simulation results are presented to verify the robustness against motor parameter variation and regulation speed.

Effects of Operating Conditions on Calcium Carbonate Fouling in a Plate Heat Exchanger

The aim of this work is to investigate on the internalflow patterns in a plate heat exchanger channel, which affect the rate of sedimentation fouling on the heat transfer surface of the plate heat exchanger. The research methodologies were the computer simulation using Computational Fluid Dynamics (CFD) and the experimental works. COMSOL MULTIPHYSICS™ Version 3.3 was used to simulate the velocity flow fields to verify the low and high flow regions. The results from the CFD technique were then compared with the images obtained from the experiments in which the fouling test rig was set up with a singlechannel plate heat exchanger to monitor the fouling of calcium carbonate. Two parameters were varied i.e., the crossing angle of the two plate: 55/55, 10/10, and 55/10 degree, and the fluid flow rate at the inlet: 0.0566, 0.1132 and 0.1698 m/s. The type of plate “GX-12" (the surface area 0.12 m2, the depth 2.9 mm, the width of fluid flow 215 mm and the thickness of stainless plate of 0.5 mm) was used in this study. The results indicated that the velocity distribution for the case of 55/55 degree seems to be very well organized when compared with the others. Also, an increase in the inlet velocity resulted in the reduction of fouling rate on the surface of plate heat exchangers.

The Economic Cost of Health and Safety in Work Places: An Approach on the Costs Calculating Model

One of the important steps in a safety and risk management system is the economical evaluation of occupational accident and diseases costs in order to decrease accidents from reoccurring in the workplace. This study proposed a plausible method for calculating occupational accident costs and illnesses in work place. This method design for cost estimation takes into account both the personnel, organizational level as well as the community level especially intended for an Iranian work place. The research indicates that a using systematic method for calculating costs which also provides risk evaluation can help managers to plan correctly the investment in health and safety measures. Using this method is that not only is it comprehensive, easy and practical and could be applied in practice by a manager within a short period of time but it also shows the importance of accident costs as well as calculates the real cost of an accident and illnesses.

Lyric Poetry and the Motives in the Works of Poets of Syr Darya River Vicinity

This article provides a comparative analysis of poetries of diverse nations around the world while largely focusing on Kazakh lyric poetry (Kazakh zhyraulyq oneri). Alongside, it sheds the light to the historical development and contemporary progress path of foremost poetry school located along the Syr Darya coast. Hereby, it-s content and central motives are examined.

Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

Pharmacology Applied Learning Program in Preclinical Years – Student Perspectives

Pharmacology curriculum plays an integral role in medical education. Learning pharmacology to choose and prescribe drugs is a major challenge encountered by students. We developed pharmacology applied learning activities for first year medical students that included realistic clinical situations with escalating complications which required the students to analyze the situation and think critically to choose a safe drug. Tutor feedback was provided at the end of session. Evaluation was done to assess the students- level of interest and usefulness of the sessions in rational selection of drugs. Majority (98 %) of the students agreed that the session was an extremely useful learning exercise and agreed that similar sessions would help in rational selection of drugs. Applied learning sessions in the early years of medical program may promote deep learning and bridge the gap between pharmacology theory and clinical practice. Besides, it may also enhance safe prescribing skills.

Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor

In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.

Empowering Communications Challenged users using Development Kits

The rapid pace of technological advancement and its consequential widening digital divide has resulted in the marginalization of the disabled especially the communication challenged. The dearth of suitable technologies for the development of assistive technologies has served to further marginalize the communications challenged user population and widen this chasm even further. Given the varying levels of disability there and its associated requirement for customized solution based. This paper explains the use of a Software Development Kits (SDK) for the bridging of this communications divide through the use of industry poplar communications SDKs towards identification of requirements for communications challenged users as well as identification of appropriate frameworks for future development initiatives.

A Survey: Clustering Ensembles Techniques

The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.

Discontinuous Feedback Linearization of an Electrically Driven Fast Robot Manipulator

A multivariable discontinuous feedback linearization approach is proposed to position control of an electrically driven fast robot manipulator. A desired performance is achieved by selecting a useful controller and suitable sampling rate and considering saturation for actuators. There is a high flexibility to apply the proposed control approach on different electrically driven manipulators. The control approach can guarantee the stability and satisfactory tracking performance. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a desired performance for control system under technical specifications.