Modeling Language for Machine Learning

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem.

Coupling Compensation of 6-DOF Parallel Robot Based on Screw Theory

In order to improve control performance and eliminate steady, a coupling compensation for 6-DOF parallel robot is presented. Taking dynamic load Tank Simulator as the research object, this paper analyzes the coupling of 6-DOC parallel robot considering the degree of freedom of the 6-DOF parallel manipulator. The coupling angle and coupling velocity are derived based on inverse kinematics model. It uses the mechanism-model combined method which takes practical moving track that considering the performance of motion controller and motor as its input to make the study. Experimental results show that the coupling compensation improves motion stability as well as accuracy. Besides, it decreases the dither amplitude of dynamic load Tank Simulator.

Molecular Dynamics of Fatty Acid Interacting with Carbon Nanotube as Selective Device

In this paper we study a system composed by carbon nanotube (CNT) and bundle of carbon nanotube (BuCNT) interacting with a specific fatty acid as molecular probe. Full system is represented by open nanotube (or nanotubes) and the linoleic acid (LA) relaxing due the interaction with CNT and BuCNT. The LA has in his form an asymmetric shape with COOH termination provoking a close BuCNT interaction mainly by van der Waals force field. The simulations were performed by classical molecular dynamics with standard parameterizations. Our results show that these BuCNT and CNT are dynamically stable and it shows a preferential interaction position with LA resulting in three features: (i) when the LA is interacting with CNT and BuCNT (including both termination, CH2 or COOH), the LA is repelled; (ii) when the LA terminated with CH2 is closer to open extremity of BuCNT, the LA is also repelled by the interaction between them; and (iii) when the LA terminated with COOH is closer to open extremity of BuCNT, the LA is encapsulated by the BuCNT. These simulations are part of a more extensive work on searching efficient selective molecular devices and could be useful to reach this goal.

Using Fractional Factorial Designs for Variable Importance in Random Forest Models

Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.

The State, Local Community and Participatory Governance Practices: Prospects of Change

In policy discourse of 1990s, more inclusive spaces have been constructed for realizing full and meaningful participation of common people in education. These participatory spaces provide an alternative possibility for universalizing elementary education against the backdrop of a history of entrenched forms of social and economical exclusion; inequitable education provisions; and shrinking role of the state in today-s neo-liberal times. Drawing on case-studies of bottom-up approaches to school governance, the study examines an array of innovative ways through which poor people gained a sense of identity and agency by evolving indigenous solutions to issues regarding schooling of their children. In the process, state-s institutions and practices became more accountable and responsive to educational concerns of the marginalized people. The deliberative participation emerged as an active way of experiencing deeper forms of empowerment and democracy than its passive realization as mere bearers of citizen rights.

CFD Modeling of a Radiator Axial Fan for Air Flow Distribution

The fluid mechanics principle is used extensively in designing axial flow fans and their associated equipment. This paper presents a computational fluid dynamics (CFD) modeling of air flow distribution from a radiator axial flow fan used in an acid pump truck Tier4 (APT T4) Repower. This axial flow fan augments the transfer of heat from the engine mounted on the APT T4. CFD analysis was performed for an area weighted average static pressure difference at the inlet and outlet of the fan. Pressure contours, velocity vectors, and path lines were plotted for detailing the flow characteristics for different orientations of the fan blade. The results were then compared and verified against known theoretical observations and actual experimental data. This study shows that a CFD simulation can be very useful for predicting and understanding the flow distribution from a radiator fan for further research work.

A Theoretical Framework for Rural Tourism Motivation Factors

Rural tourism has many economical, environmental, and socio-cultural benefits. However, the development of rural tourism compared to urban tourism is also faced with several challenges added to the disadvantages of rural tourism. The aim of this study is to design a model of the factors affecting the motivations of rural tourists, in an attempt to improve the understanding of rural tourism motivation for the development of that form of tourism. The proposed model is based on a sound theoretical framework. It was designed following a literature review of tourism motivation theoretical frameworks and of rural tourism motivation factors. The tourism motivation theoretical framework that fitted to the best all rural tourism motivation factors was then chosen as the basis for the proposed model. This study hence found that the push and pull tourism motivation framework and the inner and outer directed values theory are the most adequate theoretical frameworks for the modeling of rural tourism motivation.

Navigation Patterns Mining Approach based on Expectation Maximization Algorithm

Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.

Simulation of a Double-Sided Axial Flux Brushless Dc Two-Phase Motor Dynamics

The objective of this paper is to analyze the performance of a double-sided axial flux permanent magnet brushless DC (AFPM BLDC) motor with two-phase winding. To study the motor operation, a mathematical dynamic model has been proposed for motor, which became the basis for simulations that were performed using MATLAB/SIMULINK software package. The results of simulations were presented in form of the waveforms of selected quantities and the electromechanical characteristics performed by the motor. The calculation results show that the two-phase motor version develops smooth torque and reaches high efficiency. The twophase motor can be applied where more smooth torque is required. Finally a study on the influence of switching angle on motor performance shows that when advance switching technique is used, the motor operates with the highest efficiency.

Modeling of PZ in Haunch Connections Systems

Modeling of Panel Zone (PZ) seismic behavior, because of its role in overall ductility and lateral stiffness of steel moment frames, has been considered a challenge for years. There are some studies regarding the effects of different doubler plates thicknesses and geometric properties of PZ on its seismic behavior. However, there is not much investigation on the effects of number of provided continuity plates in case of presence of one triangular haunch, two triangular haunches and rectangular haunch (T shape haunches) for exterior columns. In this research first detailed finite element models of 12tested connection of SAC joint venture were created and analyzed then obtained cyclic behavior backbone curves of these models besides other FE models for similar tests were used for neural network training. Then seismic behavior of these data is categorized according to continuity plate-s arrangements and differences in type of haunches. PZ with one-sided haunches have little plastic rotation. As the number of continuity plates increases due to presence of two triangular haunches (four continuity plate), there will be no plastic rotation, in other words PZ behaves in its elastic range. In the case of rectangular haunch, PZ show more plastic rotation in comparison with one-sided triangular haunch and especially double-sided triangular haunches. Moreover, the models that will be presented in case of triangular one-sided and double- sided haunches and rectangular haunches as a result of this study seem to have a proper estimation of PZ seismic behavior.

Body Composition Index Predict Children’s Motor Skills Proficiency

Failure in mastery of motor skills proficiency during childhood has been seen as a detrimental factor for children to be physically active. Lack of motor skills proficiency tends to reduce children’s competency and confidence level to participate in physical activity. As a consequence of less participation in physical activity, children will turn to be overweight and obese. It has been suggested that children who master motor skill proficiency will be more involved in physical activity thus preventing them from being overweight. Obesity has become a serious childhood health issues worldwide. Previous studies have found that children who were overweight and obese were generally less active however these studies focused on one gender. This study aims to compare motor skill proficiency of underweight, normal-weight, overweight and obese young boys as well as to determine the relationship between motor skills proficiency and body composition. 112 boys aged between 8 to 10 years old participated in this study. Participants were assigned to four groups; underweight, normal-weight, overweight and obese using BMI-age percentile chart for children. Bruininks- Oseretsky Test Second Edition-Short Form was administered to assess their motor skill proficiency. Meanwhile, body composition was determined by the skinfold thickness measurement. Result indicated that underweight and normal children were superior in motor skills proficiency compared to overweight and obese children (p < 0.05). A significant strong inverse correlation between motor skills proficiency and body composition (r = -0.849) is noted. The findings of this study could be explained by non-contributory mass that carried by overweight and obese children leads to biomechanical movement inefficiency which will become detrimental to motor skills proficiency. It can be concluded that motor skills proficiency is inversely correlated with body composition.

An Ontology for Knowledge Representation and Applications

Ontology is a terminology which is used in artificial intelligence with different meanings. Ontology researching has an important role in computer science and practical applications, especially distributed knowledge systems. In this paper we present an ontology which is called Computational Object Knowledge Base Ontology. It has been used in designing some knowledge base systems for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the knowledge system in linear algebra.

The Study of Fabricating the Field Emission Lamps with Carbon nano-Materials

Fabrication and efficiency enhancement of non-mercury, high efficiency and green field emission lamps using carbon nano-materials such as carbon nanotubes as cathode field emitters was studied. Phosphor was coated on the ITO glass or metal substrates as the anode. The luminescence efficiency enhancement was carried out by upgrading the uniform of the emitters, improving electron and thermal conductivity of the phosphor and the optimization of the design of different cathode/anode configurations. After evaluation of the aforementioned parameters, the luminescence efficiency of the field emission lamps was raised.

Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study

This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.

Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis

It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.

Effect of Domestic Treated Wastewater use on Three Varieties of Amaranth (Amaranthus spp.) under Semi Arid Conditions

An experiment was implemented in a filed in the south of Morocco to evaluate the effects of domestic treated wastewater use for irrigation of amaranth crop under semi-arid conditions. Three varieties (A0020, A0057 & A211) were tested and irrigated using domestic treated wastewater EC1 (0,92 dS/m) as control, EC3 (3dS/m) and EC6 (6dS/m) obtained by adding sea water. In term of growth, an increase of the EC level of applied irrigation water reduced significantly the plant-s height, leaf area, fresh and dry weight measured at vegetative, flowering and maturity stage for all varieties. Even with the application of the EC6, yields were relatively higher in comparison with the once obtained in normal cultivation conditions. A significant accumulation of nitrate, chloride and sodium in soil layers during the crop cycle was noted. The use of treated waste water for its irrigation is proved to be possible. The variety A211 had showed to be less sensitive to salinity stress and it could be more promising its introduction to study area.

Development of the Algorithm for Detecting Falls during Daily Activity using 2 Tri-Axial Accelerometers

Falls are the primary cause of accidents in people over the age of 65, and frequently lead to serious injuries. Since the early detection of falls is an important step to alert and protect the aging population, a variety of research on detecting falls was carried out including the use of accelerators, gyroscopes and tilt sensors. In exiting studies, falls were detected using an accelerometer with errors. In this study, the proposed method for detecting falls was to use two accelerometers to reject wrong falls detection. As falls are accompanied by the acceleration of gravity and rotational motion, the falls in this study were detected by using the z-axial acceleration differences between two sites. The falls were detected by calculating the difference between the analyses of accelerometers placed on two different positions on the chest of the subject. The parameters of the maximum difference of accelerations (diff_Z) and the integration of accelerations in a defined region (Sum_diff_Z) were used to form the fall detection algorithm. The falls and the activities of daily living (ADL) could be distinguished by using the proposed parameters without errors in spite of the impact and the change in the positions of the accelerometers. By comparing each of the axial accelerations, the directions of falls and the condition of the subject afterwards could be determined.In this study, by using two accelerometers without errors attached to two sites to detect falls, the usefulness of the proposed fall detection algorithm parameters, diff_Z and Sum_diff_Z, were confirmed.

Assessment of Performance Measures of Large-Scale Power Systems

In a recent major industry-supported research and development study, a novel framework was developed and applied for assessment of reliability and quality performance levels in reallife power systems with practical large-scale sizes. The new assessment methodology is based on three metaphors (dimensions) representing the relationship between available generation capacities and required demand levels. The paper shares the results of the successfully completed stud and describes the implementation of the new methodology on practical zones in the Saudi electricity system.

Topology Influence on TCP Congestion Control Performance in Multi-hop Ad Hoc Wireless

Wireless ad hoc nodes are freely and dynamically self-organize in communicating with others. Each node can act as host or router. However it actually depends on the capability of nodes in terms of its current power level, signal strength, number of hops, routing protocol, interference and others. In this research, a study was conducted to observe the effect of hops count over different network topologies that contribute to TCP Congestion Control performance degradation. To achieve this objective, a simulation using NS-2 with different topologies have been evaluated. The comparative analysis has been discussed based on standard observation metrics: throughput, delay and packet loss ratio. As a result, there is a relationship between types of topology and hops counts towards the performance of ad hoc network. In future, the extension study will be carried out to investigate the effect of different error rate and background traffic over same topologies.

Thermal and Mechanical Properties of Basalt Fibre Reinforced Concrete

In this study, the thermal and mechanical properties of basalt fibre reinforced concrete were investigated. The volume fractions of basalt fibre of (0.1, 0.2, 0.3, and 0.5% by total mix volume) were used. Properties such as heat transfer, compressive and splitting tensile strengths were examined. Results indicated that the strength increases with increase the fibre content till 0.3% then there is a slight reduction when 0.5% fibre used. Lower amount of heat conducted through the thickness of concrete specimens than the conventional concrete was also recorded.