Methane and Other Hydrocarbon Gas Emissions Resulting from Flaring in Kuwait Oilfields

Air pollution is a major environmental health problem, affecting developed and developing countries around the world. Increasing amounts of potentially harmful gases and particulate matter are being emitted into the atmosphere on a global scale, resulting in damage to human health and the environment. Petroleum-related air pollutants can have a wide variety of adverse environmental impacts. In the crude oil production sectors, there is a strong need for a thorough knowledge of gaseous emissions resulting from the flaring of associated gas of known composition on daily basis through combustion activities under several operating conditions. This can help in the control of gaseous emission from flares and thus in the protection of their immediate and distant surrounding against environmental degradation. The impacts of methane and non-methane hydrocarbons emissions from flaring activities at oil production facilities at Kuwait Oilfields have been assessed through a screening study using records of flaring operations taken at the gas and oil production sites, and by analyzing available meteorological and air quality data measured at stations located near anthropogenic sources. In the present study the Industrial Source Complex (ISCST3) Dispersion Model is used to calculate the ground level concentrations of methane and nonmethane hydrocarbons emitted due to flaring in all over Kuwait Oilfields. The simulation of real hourly air quality in and around oil production facilities in the State of Kuwait for the year 2006, inserting the respective source emission data into the ISCST3 software indicates that the levels of non-methane hydrocarbons from the flaring activities exceed the allowable ambient air standard set by Kuwait EPA. So, there is a strong need to address this acute problem to minimize the impact of methane and non-methane hydrocarbons released from flaring activities over the urban area of Kuwait.

Dengue Disease Mapping with Standardized Morbidity Ratio and Poisson-gamma Model: An Analysis of Dengue Disease in Perak, Malaysia

Dengue disease is an infectious vector-borne viral disease that is commonly found in tropical and sub-tropical regions, especially in urban and semi-urban areas, around the world and including Malaysia. There is no currently available vaccine or chemotherapy for the prevention or treatment of dengue disease. Therefore prevention and treatment of the disease depend on vector surveillance and control measures. Disease risk mapping has been recognized as an important tool in the prevention and control strategies for diseases. The choice of statistical model used for relative risk estimation is important as a good model will subsequently produce a good disease risk map. Therefore, the aim of this study is to estimate the relative risk for dengue disease based initially on the most common statistic used in disease mapping called Standardized Morbidity Ratio (SMR) and one of the earliest applications of Bayesian methodology called Poisson-gamma model. This paper begins by providing a review of the SMR method, which we then apply to dengue data of Perak, Malaysia. We then fit an extension of the SMR method, which is the Poisson-gamma model. Both results are displayed and compared using graph, tables and maps. Results of the analysis shows that the latter method gives a better relative risk estimates compared with using the SMR. The Poisson-gamma model has been demonstrated can overcome the problem of SMR when there is no observed dengue cases in certain regions. However, covariate adjustment in this model is difficult and there is no possibility for allowing spatial correlation between risks in adjacent areas. The drawbacks of this model have motivated many researchers to propose other alternative methods for estimating the risk.

Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Flexible Communication Platform for Crisis Management

Topics Disaster and Emergency Management are highly debated among experts. Fast communication will help to deal with emergencies. Problem is with the network connection and data exchange. The paper suggests a solution, which allows possibilities and perspectives of new flexible communication platform to the protection of communication systems for crisis management. This platform is used for everyday communication and communication in crisis situations too.

GIS-based Non-point Sources of Pollution Simulation in Cameron Highlands, Malaysia

Cameron Highlands is a mountainous area subjected to torrential tropical showers. It extracts 5.8 million liters of water per day for drinking supply from its rivers at several intake points. The water quality of rivers in Cameron Highlands, however, has deteriorated significantly due to land clearing for agriculture, excessive usage of pesticides and fertilizers as well as construction activities in rapidly developing urban areas. On the other hand, these pollution sources known as non-point pollution sources are diverse and hard to identify and therefore they are difficult to estimate. Hence, Geographical Information Systems (GIS) was used to provide an extensive approach to evaluate landuse and other mapping characteristics to explain the spatial distribution of non-point sources of contamination in Cameron Highlands. The method to assess pollution sources has been developed by using Cameron Highlands Master Plan (2006-2010) for integrating GIS, databases, as well as pollution loads in the area of study. The results show highest annual runoff is created by forest, 3.56 × 108 m3/yr followed by urban development, 1.46 × 108 m3/yr. Furthermore, urban development causes highest BOD load (1.31 × 106 kgBOD/yr) while agricultural activities and forest contribute the highest annual loads for phosphorus (6.91 × 104 kgP/yr) and nitrogen (2.50 × 105 kgN/yr), respectively. Therefore, best management practices (BMPs) are suggested to be applied to reduce pollution level in the area.

Spatial Structure and Spatial Impacts of the Jakarta Metropolitan Area: A Southeast Asian EMR Perspective

This paper investigates the spatial structure of employment in the Jakarta Metropolitan Area (JMA), with reference to the concept of the Southeast Asian extended metropolitan region (EMR). A combination of factor analysis and local Getis-Ord (Gi*) hot-spot analysis is used to identify clusters of employment in the region, including those of the urban and agriculture sectors. Spatial statistical analysis is further used to probe the spatial association of identified employment clusters with their surroundings on several dimensions, including the spatial association between the central business district (CBD) in Jakarta city on employment density in the region, the spatial impacts of urban expansion on population growth and the degree of urban-rural interaction. The degree of spatial interaction for the whole JMA is measured by the patterns of commuting trips destined to the various employment clusters. Results reveal the strong role of the urban core of Jakarta, and the regional CBD, as the centre for mixed job sectors such as retail, wholesale, services and finance. Manufacturing and local government services, on the other hand, form corridors radiating out of the urban core, reaching out to the agriculture zones in the fringes. Strong associations between the urban expansion corridors and population growth, and urban-rural mix, are revealed particularly in the eastern and western parts of JMA. Metropolitan wide commuting patterns are focussed on the urban core of Jakarta and the CBD, while relatively local commuting patterns are shown to be prevalent for the employment corridors.

Urban Management and China's Municipal Pattern

Not only is municipal pattern the institution basement of urban management, but it also determines the forms of the management results. There-s a considerable possibility of bankruptcy for China-s current municipal pattern as it-s an overdraft of land deal in fact. Based on the analysis of China-s current municipal pattern, the passage proposed an assumption of a new pattern verified legitimacy by conceptual as well as econometric models. Conclusion is: the added supernumerary value of investment in public goods was not included in China-s current municipal pattern, but hidden in the rising housing prices; we should set housing tax or municipal tax to optimize the municipal pattern, to correct the behavior of local governments and to ensure the regular development of China-s urbanization.

Sway Reduction on Gantry Crane System using Delayed Feedback Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment

This paper presents the use of anti-sway angle control approaches for a two-dimensional gantry crane with disturbances effect in the dynamic system. Delayed feedback signal (DFS) and proportional-derivative (PD)-type fuzzy logic controller are the techniques used in this investigation to actively control the sway angle of the rope of gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of both controllers are examined in terms of sway angle suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.

Modeling Ambient Carbon Monoxide Pollutant Due to Road Traffic

Rapid urbanization, industrialization and population growth have led to an increase in number of automobiles that cause air pollution. It is estimated that road traffic contributes 60% of air pollution in urban areas. A case by case assessment is required to predict the air quality in urban situations, so as to evolve certain traffic management measures to maintain the air quality levels with in the tolerable limits. Calicut city in the state of Kerala, India has been chosen as the study area. Carbon Monoxide (CO) concentration was monitored at 15 links in Calicut city and air quality performance was evaluated over each link. The CO pollutant concentration values were compared with the National Ambient Air Quality Standards (NAAQS), and the CO values were predicted by using CALINE4 and IITLS and Linear regression models. The study has revealed that linear regression model performs better than the CALINE4 and IITLS models. The possible association between CO pollutant concentration and traffic parameters like traffic flow, type of vehicle, and traffic stream speed was also evaluated.

An Analysis of Users- Cognition Difference on Urban Design Elements in Waterfronts

The purpose of this study is to identify ideal urban design elements of waterfronts and to analyze the differences in users- cognition among these elements. This study follows three steps as following: first is identifying the urban design elements of waterfronts from literature review and second is evaluating intended users- cognition of urban design elements in urban waterfronts. Lastly, third is analyzing the users- cognition differences. As the result, evaluations of waterfront areas by users show similar features that non-waterfront urban design elements contain the highest degree of importance. This indicates the difference of users- cognition has dimensions of frequency and distance, and demonstrates differences in the aspect of importance than of satisfaction. Multi-Dimensional Scaling Method verifies differences among their cognition. This study provides elements to increase satisfaction of users from differences of their cognition on design elements for waterfronts. It also suggests implications on elements when waterfronts are built.

Tobephobia: Teachers- Ineptitude to Manage Curriculum Change

In this paper, Tobephobia (TBP) alludes to the fear of failure experienced by teachers to manage curriculum change. TBP is an emerging concept and it extends the boundaries of research in terms of how we view achievement and failure in education. Outcomes-based education (OBE) was introduced fifteen years ago in South African schools without simultaneously upgrading teachers- professional competencies. This exploratory research, therefore examines a simple question: What is the impact of TBP and OBE on teachers? Teacher ineptitude to cope with the OBE curriculum in the classroom is a serious problem affecting large numbers of South African teachers. This exploratory study sought to determine the perceived negative impact of OBE and TBP on teachers. A survey was conducted amongst 311 teachers in Port Elizabeth and Durban, South Africa. The results confirm the very negative impact of TBP and OBE on teachers. This exploratory study authenticates the existence of TBP.

Dispenser Longitudinal Movement ControlDesign Based on Auto - Disturbances –Rejection - Controller

Based on the feature of model disturbances and uncertainty being compensated dynamically in auto – disturbances-rejection-controller (ADRC), a new method using ADRC is proposed for the decoupling control of dispenser longitudinal movement in big flight envelope. Developed from nonlinear model directly, ADRC is especially suitable for dynamic model that has big disturbances. Furthermore, without changing the structure and parameters of the controller in big flight envelope, this scheme can simplify the design of flight control system. The simulation results in big flight envelope show that the system achieves high dynamic performance, steady state performance and the controller has strong robustness.

The New Approach to Sustainability in the Design of Urban and Architectural Interiors – Elements of Composition Revised

Today we tend to go back to the past to our root relation to nature. Therefore in search of friendly spaces there are elements of natural environment introduced as elements of spatial composition. Though reinvented through the use of the new substance such as greenery, water etc. made possible by state of the art technologies, still, in principal, they remain the same. As a result, sustainable design, based upon the recognized means of composition in addition to the relation of architecture and urbanism vs. nature introduces a new aesthetical values into architectural and urban space.

Modeling Decentralized Source-Separation Systems for Urban Waste Management

Decentralized eco-sanitation system is a promising and sustainable mode comparing to the century-old centralized conventional sanitation system. The decentralized concept relies on an environmentally and economically sound management of water, nutrient and energy fluxes. Source-separation systems for urban waste management collect different solid waste and wastewater streams separately to facilitate the recovery of valuable resources from wastewater (energy, nutrients). A resource recovery centre constituted for 20,000 people will act as the functional unit for the treatment of urban waste of a high-density population community, like Singapore. The decentralized system includes urine treatment, faeces and food waste co-digestion, and horticultural waste and organic fraction of municipal solid waste treatment in composting plants. A design model is developed to estimate the input and output in terms of materials and energy. The inputs of urine (yellow water, YW) and faeces (brown water, BW) are calculated by considering the daily mean production of urine and faeces by humans and the water consumption of no-mix vacuum toilet (0.2 and 1 L flushing water for urine and faeces, respectively). The food waste (FW) production is estimated to be 150 g wet weight/person/day. The YW is collected and discharged by gravity into tank. It was found that two days are required for urine hydrolysis and struvite precipitation. The maximum nitrogen (N) and phosphorus (P) recovery are 150-266 kg/day and 20-70 kg/day, respectively. In contrast, BW and FW are mixed for co-digestion in a thermophilic acidification tank and later a decentralized/centralized methanogenic reactor is used for biogas production. It is determined that 6.16-15.67 m3/h methane is produced which is equivalent to 0.07-0.19 kWh/ca/day. The digestion residues are treated with horticultural waste and organic fraction of municipal waste in co-composting plants.

The Role of Railway Services in Sustainable Urban Development

Kobe City is a metropolis including large suburbs, where housing communities have been developed for many years. People have been recently moving to the urban areas and the suburbs are losing their power to attract population. At the same time, many blocks of high-rise flats have being built near railway stations adjoining town centers, and are drawing people of all generations. Residents with different lifestyle preferences are making good use of town centers and city centers based on effective railway services to live together happily in a household as well as the same flats. Thus railway services can play an essential role in sustainable urban development.

Conventional and Fuzzy Logic Controllers at Generator Location for Low Frequency Oscillation Damping

This paper investigates and compares performance of various conventional and fuzzy logic based controllers at generator locations for oscillation damping. Performance of combination of conventional and fuzzy logic based controllers also studied by comparing overshoot on the active power deviation response for a small disturbance and damping ratio of the critical mode. Fuzzy logic based controllers can not be modeled in the state space form to get the eigenvalues and corresponding damping ratios of various modes of generators and controllers. Hence, a new method based on tracing envelop of time domain waveform is also presented and used in the paper for comparing performance of controllers. The paper also shows that if the fuzzy based controllers designed separately combining them could not lead to a better performance.

Gated Community: The Past and Present in China

Gated community has gained its dominant in residential areas development that it has become the standard development pattern of the newly built residential areas in contemporary China. The form of gated community has its own advantages and rationality that meet the needs of quite a lot of residents, but it-s also believed by researchers that the form has great damage to the urban morphology and development, and has a negative impact on residents- living style. However, there is still a considerable controversy of the origins and outcomes. Though recognized as a global phenomenon, gated community developed in China is greatly to do with the specific local forces, respect to the unique historical, political and socio-cultural momentums. A historical review of the traditional settlements in China and the trends that how Gated community has gained its contemporary form, is indispensable for comprehending the local forces, and provide a new perspective to solve the controversy.

Analysis and Remediation of Fecal Coliform Bacteria Pollution in Selected Surface Water Bodies of Enugu State of Nigeria

The assessment of surface waters in Enugu metropolis for fecal coliform bacteria was undertaken. Enugu urban was divided into three areas (A1, A2 and A3), and fecal coliform bacteria analysed in the surface waters found in these areas for four years (2005-2008). The plate count method was used for the analyses. Data generated were subjected to statistical tests involving; Normality test, Homogeneity of variance test, correlation test, and tolerance limit test. The influence of seasonality and pollution trends were investigated using time series plots. Results from the tolerance limit test at 95% coverage with 95% confidence, and with respect to EU maximum permissible concentration show that the three areas suffer from fecal coliform pollution. To this end, remediation procedure involving the use of saw-dust extracts from three woods namely; Chlorophora-Excelsa (C-Excelsa),Khayan-Senegalensis,(CSenegalensis) and Erythrophylum-Ivorensis (E-Ivorensis) in controlling the coliforms was studied. Results show that mixture of the acetone extracts of the woods show the most effective antibacterial inhibitory activities (26.00mm zone of inhibition) against E-coli. Methanol extract mixture of the three woods gave best inhibitory activity (26.00mm zone of inhibition) against S-areus, and 25.00mm zones of inhibition against E-Aerogenes. The aqueous extracts mixture gave acceptable zones of inhibitions against the three bacteria organisms.

The Role Played by Swift Change of the Stability Characteristic of Mean Flow in Bypass Transition

The scenario of bypass transition is generally described as follows: the low-frequency disturbances in the free-stream may generate long stream-wise streaks in the boundary layer, which later may trigger secondary instability, leading to rapid increase of high-frequency disturbances. Then possibly turbulent spots emerge, and through their merging, lead to fully developed turbulence. This description, however, is insufficient in the sense that it does not provide the inherent mechanism of transition that during the transition, a large number of waves with different frequencies and wave numbers appear almost simultaneously, producing sufficiently large Reynolds stress, so the mean flow profile can change rapidly from laminar to turbulent. In this paper, such a mechanism will be figured out from analyzing DNS data of transition.

A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping

Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions.