The Motivation of Unaccusative Constructions in Chinese: A Comparative Investigation with Japanese

In Chinese there are some unaccusative constructions such as “Chuang-shang tang-zhe yige bingren ‘In the bed lies a patient”, which are impossible in Japanese. This paper focused on the motivation of the occurrence of such constructions by comparing with Japanese and propose that, Chinese unaccusative constructions are extensions of existential constructions, which has a HAVE-type construction. By contrast, Japanese constructions which exactly express the same meaning also have similar syntactic configurations to Japanese existential constructions, which has a BE-type construction. Since HAVE-type construction has an analogous structure with unaccusative constructions but BE-type construction has not, we can assume a language that use HAVE-type construction to express existence would have a motivation to the appearance of unaccusative constructions.

Automated Monitoring System to Support Investigation of Contributing Factors of Work-Related Disorders and Accidents

Work-related illnesses and disorders have been a constant aspect of work. Although their nature has changed over time, from musculoskeletal disorders to illnesses related to psychosocial aspects of work, its impact on the life of workers remains significant. Despite significant efforts worldwide to protect workers, the disparity between changes in work legislation and actual benefit for workers’ health has been creating a significant economic burden for social security and health systems around the world. In this context, this study aims to propose, test and validate a modular prototype that allows for work environmental aspects to be assessed, monitored and better controlled. The main focus is also to provide a historical record of working conditions and the means for workers to obtain comprehensible and useful information regarding their work environment and legal limits of occupational exposure to different types of environmental variables, as means to improve prevention of work-related accidents and disorders. We show the developed prototype provides useful and accurate information regarding the work environmental conditions, validating them with standard occupational hygiene equipment. We believe the proposed prototype is a cost-effective and adequate approach to work environment monitoring that could help elucidate the links between work and occupational illnesses, and that different industry sectors, as well as developing countries, could benefit from its capabilities.

Modeling of Titanium Alloy Implant for Fractured Distal Femur

In the present work, reverse engineering (RE) approach has been used to create a 3D model of a fractured femur bone using the computed tomography (CT) scan data. Thereafter, counter fit fixation plates of Titanium alloy (Ti6Al4V) have been designed and analyzed considering physiological static loading conditions. From the analysis, it has been inferred that the stresses and deformation developed are quite low. It implies that these designed customized fixation plates are able to provide stable fixation resulting in improved fracture union.

Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.

The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge

Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.

ROSA/LSTF Test on Pressurized Water Reactor Steam Generator Tube Rupture Accident Induced by Main Steam Line Break with Recovery Actions

An experiment was performed for the OECD/NEA ROSA-2 Project employing the ROSA/LSTF (rig of safety assessment/large-scale test facility), which simulated a steam generator tube rupture (SGTR) accident induced by main steam line break (MSLB) with operator recovery actions in a pressurized water reactor (PWR). The primary pressure decreased to the pressure level nearly-equal to the intact steam generator (SG) secondary-side pressure even with coolant injection from the high-pressure injection (HPI) system of emergency core cooling system (ECCS) into cold legs. Multi-dimensional coolant behavior appeared such as thermal stratification in both hot and cold legs in intact loop. The RELAP5/MOD3.3 code indicated the insufficient predictions of the primary pressure, the SGTR break flow rate, and the HPI flow rate, and failed to predict the fluid temperatures in the intact loop hot and cold legs. Results obtained from the comparison among three LSTF SGTR-related tests clarified that the thermal stratification occurs in the horizontal legs by different mechanisms.

Daily Site Risks Associated with Construction Projects and On-spot Corrective Measurements: Case Study of Revamping Projects in Kuwait Oil Company Fields Area

The growth and expansion of the industrial facilities comes proportional to the market increasing demand of products and services. Furthermore, raw material producers such as oil companies usually undergo massive revamping projects to maintain a synchronized supply. These revamping projects are usually delivered through challenging construction projects held and associated with daily site risks related to the construction process. Henceforth, a case study related to these risks and corresponding on-spot corrective measurements has been made on a certain number of construction project contractors at Kuwait Oil Company (KOC) to derive the benefits and overall effectiveness of the on-spot corrective measurements during the construction phase of a project, and how would the same help in avoiding major incidents, ensuring a smooth, cost effective and on time delivery of the project. Findings of this case study shall have an added value to the overall risk management process by minimizing the daily site risks that may affect the project lead time, resulting in an undisturbed on-site construction process.

The Effect of Symmetry on the Perception of Happiness and Boredom in Design Products

The present research investigates the effect of symmetry on the perception of happiness and boredom in design products. Three experiments were carried out in order to verify the degree of the visual expressive value on different models of bookcases, wall clocks, and chairs. 60 participants directly indicated the degree of happiness and boredom using 7-point rating scales. The findings show that the participants acknowledged a different value of expressive quality in the different product models. Results show also that symmetry is not a significant constraint for an emotional design project.

Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

A Secure Auditing Framework for Load Balancing in Cloud Environment

Security audit is an important aspect or feature to be considered in cloud service customer. It is basically a certification process to audit the controls that deliver the security requirements. Security audits are conducted by trained and qualified staffs that belong to an independent auditing organization. Security audits must be carried as a standard of security controls. Proper check to be made that the cloud user has a proper reporting and logging facilities with the customer's system and hence ensuring appropriate business and operational flow of data through cloud service. We propose a cloud-based secure auditing framework, which enables confided in power to safely store their mystery information on the semi-believed cloud specialist co-ops, and specifically share their mystery information with a wide scope of information recipient, to diminish the key administration intricacy for power proprietors and information collectors. Unique in relation to past cloud-based information framework, data proprietors transfer their mystery information into cloud utilizing static and dynamic evaluating plan. Another propelled determination is, if any information beneficiary needs individual record to download, the information collector will send the solicitation to the expert. The specialist proprietor has the Access Control. At the off probability, the businessman must impart the primary record to the knowledge collector, acknowledge statistics beneficiary solicitation. Once the acknowledgement for the records is over, the recipient downloads the first record and this record shifting time with date and downloading time with date are monitored by the inspector. In addition to deduplication concept, diminished cloud memory area using dynamic document distribution has been proposed.

System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data

The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.

Countering Radicalization to Violent Extremism: A Comparative Study of Canada, the UK and South East Asia

Recent high-profile terrorist events in Canada, the United Kingdom and Europe – the London Bridge attacks, the terrorist attacks in Nice, France and Barcelona, Spain, the 2014 Ottawa Parliament attacks and the 2017 attacks in Edmonton – have all raised levels of public and academic concern with so-called “lone-wolf” and “radicalized” terrorism. Similarly, several countries outside of the “Western” world have been dealing with radicalization to violent extremism for several years. Many South East Asian countries, including Indonesia, Malaysia, Singapore and the Philippines have all had experience with what might be described as ISIS or extremist-inspired acts of terrorism. Indeed, it appears the greatest strength of groups such as ISIS has been their ability to spread a global message of violent extremism that has led to radicalization in markedly different jurisdictions throughout the world. These markedly different jurisdictions have responded with counter-radicalization strategies that warrant further comparative analysis. This paper utilizes an inter-disciplinary legal methodology. In doing so, it compares legal, political, cultural and historical aspects of the counter-radicalization strategies employed by Canada, the United Kingdom and several South East Asian countries (Indonesia, Malaysia, Singapore and the Philippines). Whilst acknowledging significant legal and political differences between these jurisdictions, the paper engages in these analyses with an eye towards understanding which best practices might be shared between the jurisdictions. In doing so, it presents valuable findings of a comparative nature that are useful to both academic and practitioner audiences in several jurisdictions.

A Short Survey of Integrating Urban Agriculture and Environmental Planning

The growth of the agricultural sector is known as an essential way to achieve development goals in developing countries. Urban agriculture is a way to reduce the vulnerability of urban populations of the world toward global environmental change. It is a sustainable and efficient system to respond to the environmental, social and economic needs of the city, which leads to urban sustainability. Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as poverty, food security, and environmental problems. In this study, we follow a perspective based on urban agriculture literature in order to indicate the urban agriculture’s benefits in environmental planning strategies in non-western countries like Iran. The methodological approach adopted is based on qualitative approach and documentary studies. A total of 35 articles (mixed quantitative and qualitative methods studies) were studied in final analysis, which are published in relevant journals that focus on this subject. Studies show the wide range of positive benefits of urban agriculture on food security, nutrition outcomes, health outcomes, environmental outcomes, and social capital. However, there was no definitive conclusion about the negative effects of urban agriculture. This paper provides a conceptual and theoretical basis to know about urban agriculture and its roles in environmental planning, and also conclude the benefits of urban agriculture for researchers, practitioners, and policymakers who seek to create spaces in cities for implementation urban agriculture in future.

Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes

Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.

Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching

We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.

Influence of Nanozeolite Particles on Improvement of Clayey Soil

The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.

Study of the Effect of Soil Compaction and Height on Pipe Ovality for Buried Steel Pipe

In this paper, the numerical study of buried steel pipe in soil is investigated. Buried pipeline under soil weight, after embankment on the pipe leads to ovality of pipe. In this paper also it is considered the percentage of soil compaction, the soil height on the steel pipe and the external load of a mechanical excavator on the steel pipe and finally, the effect of these on the rate of pipe ovality investigated. Furthermore, the effect of the pipes’ thickness on ovality has been investigated. The results show that increasing the percentage of soil compaction has more effect on reducing percentage of ovality, and if the percentage of soil compaction increases, we can use the pipe with less thickness. Finally, ovality rate of the pipe and acceptance criteria of pipe diameter up to yield stress is investigated.

Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay

Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.

A Framework for Improving Trade Contractors’ Productivity Tracking Methods

Despite being one of the most significant economic contributors of the country, Canada’s construction industry is lagging behind other sectors when it comes to labor productivity improvements. The construction industry is very collaborative as a general contractor, will hire trade contractors to perform most of a project’s work; meaning low productivity from one contractor can have a domino effect on the shared success of a project. To address this issue and encourage trade contractors to improve their productivity tracking methods, an investigative study was done on the productivity views and tracking methods of various trade contractors. Additionally, an in-depth review was done on four standard tracking methods used in the construction industry: cost codes, benchmarking, the job productivity measurement (JPM) standard, and WorkFace Planning (WFP). The four tracking methods were used as a baseline in comparing the trade contractors’ responses, determining gaps within their current tracking methods, and for making improvement recommendations. 15 interviews were conducted with different trades to analyze how contractors value productivity. The results of these analyses indicated that there seem to be gaps within the construction industry when it comes to an understanding of the purpose and value in productivity tracking. The trade contractors also shared their current productivity tracking systems; which were then compared to the four standard tracking methods used in the construction industry. Gaps were identified in their various tracking methods and using a framework; recommendations were made based on the type of trade on how to improve how they track productivity.