Genetic-Based Planning with Recursive Subgoals

In this paper, we introduce an effective strategy for subgoal division and ordering based upon recursive subgoals and combine this strategy with a genetic-based planning approach. This strategy can be applied to domains with conjunctive goals. The main idea is to recursively decompose a goal into a set of serializable subgoals and to specify a strict ordering among the subgoals. Empirical results show that the recursive subgoal strategy reduces the size of the search space and improves the quality of solutions to planning problems.

Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

A Study of Visual Attention in Diagnosing Cerebellar Tumours

Visual attention allows user to select the most relevant information to ongoing behaviour. This paper presents a study on; i) the performance of people measurements, ii) accurateness of people measurement of the peaks that correspond to chemical quantities from the Magnetic Resonance Spectroscopy (MRS) graphs and iii) affects of people measurements to the algorithm-based diagnosis. Participant-s eye-movement was recorded using eye-tracker tool (Eyelink II). This experiment involves three participants for examining 20 MRS graphs to estimate the peaks of chemical quantities which indicate the abnormalities associated with Cerebellar Tumours (CT). The status of each MRS is verified by using decision algorithm. Analysis involves determination of humans-s eye movement pattern in measuring the peak of spectrograms, scan path and determining the relationship of distributions of fixation durations with the accuracy of measurement. In particular, the eye-tracking data revealed which aspects of the spectrogram received more visual attention and in what order they were viewed. This preliminary investigation provides a proof of concept for use of the eye tracking technology as the basis for expanded CT diagnosis.

The Effect of Alternative Fuel Combustion in the Cement Kiln Main Burner on Production Capacity and Improvement with Oxygen Enrichment

A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capacity had to be reduced by 1-15 %, depending on the fuel type. The reason for the reduction is increased exhaust gas flow rates caused by the fuel characteristics. The model, which has been successfully validated in a full-scale experiment, was also used to show that the negative impact on the production capacity can be avoided if a relatively small part of the combustion air is replaced by pure oxygen.

Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems

Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.

Magnesium Waste Evaluation in Moderate Temperature (70oC) Magnesium Borate Synthesis

Waste problem is becoming a future problem all over the world. Magnesium wastes which can be used in recycling processes are produced by many industrial activities. Magnesium borates which have useful properties such as; high heat resistance, corrosion resistance, supermechanical strength, superinsulation, light weight, high coefficient of elasticity and so on. Addition, magnesium borates have great potential in the development of ceramic and detergents industry, whisker-reinforced composites, antiwear, and reducing friction additives. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC with different reaction times. Several reaction times of waste magnesium to H3BO3 were selected as; 30, 60, 120, 240 minutes. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques were applied to products. As a result, the forms of Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Accurate Optical Flow Based on Spatiotemporal Gradient Constancy Assumption

Variational methods for optical flow estimation are known for their excellent performance. The method proposed by Brox et al. [5] exemplifies the strength of that framework. It combines several concepts into single energy functional that is then minimized according to clear numerical procedure. In this paper we propose a modification of that algorithm starting from the spatiotemporal gradient constancy assumption. The numerical scheme allows to establish the connection between our model and the CLG(H) method introduced in [18]. Experimental evaluation carried out on synthetic sequences shows the significant superiority of the spatial variant of the proposed method. The comparison between methods for the realworld sequence is also enclosed.

A Lossless Watermarking Based Authentication System For Medical Images

In this paper we investigate the watermarking authentication when applied to medical imagery field. We first give an overview of watermarking technology by paying attention to fragile watermarking since it is the usual scheme for authentication.We then analyze the requirements for image authentication and integrity in medical imagery, and we show finally that invertible schemes are the best suited for this particular field. A well known authentication method is studied. This technique is then adapted here for interleaving patient information and message authentication code with medical images in a reversible manner, that is using lossless compression. The resulting scheme enables on a side the exact recovery of the original image that can be unambiguously authenticated, and on the other side, the patient information to be saved or transmitted in a confidential way. To ensure greater security the patient information is encrypted before being embedded into images.

Processing, Morphological, Thermal and Absorption Behavior of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites

Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on structure, thermal and absorption behavior of the nanocomposites. X-ray diffraction analysis (XRD) showed that sample with MMT loading 4phr exhibited exfoliated structure while sample that contained MMT 8 phr exhibited intercalated structure. FESEM images showed big lump when MMT loading was at 8 phr. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed Meanwhile the addition of MMT has improved the water barrier property. The nanosize MMT particle is also able to block a tortuous pathway for water to enter the starch chain, thus reducing the water uptake and improved the physical barrier of nanocomposite.

Genetic-based Anomaly Detection in Logs of Process Aware Systems

Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.

Ranking Fuzzy Numbers Based On Epsilon-Deviation Degree

Nejad and Mashinchi (2011) proposed a revision for ranking fuzzy numbers based on the areas of the left and the right sides of a fuzzy number. However, this method still has some shortcomings such as lack of discriminative power to rank similar fuzzy numbers and no guarantee the consistency between the ranking of fuzzy numbers and the ranking of their images. To overcome these drawbacks, we propose an epsilon-deviation degree method based on the left area and the right area of a fuzzy number, and the concept of the centroid point. The main advantage of the new approach is the development of an innovative index value which can be used to consistently evaluate and rank fuzzy numbers. Numerical examples are presented to illustrate the efficiency and superiority of the proposed method.

An Asymptotic Formula for Pricing an American Exchange Option

In this paper, the American exchange option (AEO) valuation problem is modelled as a free boundary problem. The critical stock price for an AEO is satisfied an integral equation implicitly. When the remaining time is large enough, an asymptotic formula is provided for pricing an AEO. The numerical results reveal that our asymptotic pricing formula is robust and accurate for the long-term AEO.

Design of an Intelligent Tutor using a Multiagent Approach

Research in distributed artificial intelligence and multiagent systems consider how a set of distributed entities can interact and coordinate their actions in order to solve a given problem. In this paper an overview of this concept and its evolution is presented particularly its application in the design of intelligent tutoring systems. An intelligent tutor based on the concept of agent and centered specifically on the design of a pedagogue agent is illustrated. Our work has two goals: the first one concerns the architecture aspect and the design of a tutor using multiagent approach. The second one deals particularly with the design of a part of a tutor system: the pedagogue agent.

Sustainability of Urban Cemeteries and the Transformation of Malay Burial Practices in Kuala Lumpur Metropolitan Region

Land shortage for burials is one of many issues that emerge out of accelerated urban growth in most developing Asian cities, including Kuala Lumpur. Despite actions taken by the federal government and local authorities in addressing this issue, there is no strategic solution being formulated. Apart from making provisions for land to be developed as new cemeteries, the future plan is merely to allocate reserve land to accommodate the increasing demands of burial grounds around the city. This paper examines problems that arise from the traditional practices of Malay funerary as well as an insight to current urban practices in managing Muslim burial spaces around Kuala Lumpur metropolitan region. This paper will also provide some solutions through design approach that can be applied to counter the existing issues.

A Study on the Average Information Ratio of Perfect Secret-Sharing Schemes for Access Structures Based On Bipartite Graphs

A perfect secret-sharing scheme is a method to distribute a secret among a set of participants in such a way that only qualified subsets of participants can recover the secret and the joint share of participants in any unqualified subset is statistically independent of the secret. The collection of all qualified subsets is called the access structure of the perfect secret-sharing scheme. In a graph-based access structure, each vertex of a graph G represents a participant and each edge of G represents a minimal qualified subset. The average information ratio of a perfect secret-sharing scheme  realizing the access structure based on G is defined as AR = (Pv2V (G) H(v))/(|V (G)|H(s)), where s is the secret and v is the share of v, both are random variables from  and H is the Shannon entropy. The infimum of the average information ratio of all possible perfect secret-sharing schemes realizing a given access structure is called the optimal average information ratio of that access structure. Most known results about the optimal average information ratio give upper bounds or lower bounds on it. In this present structures based on bipartite graphs and determine the exact values of the optimal average information ratio of some infinite classes of them.

OHASD: The First On-Line Arabic Sentence Database Handwritten on Tablet PC

In this paper we present the first Arabic sentence dataset for on-line handwriting recognition written on tablet pc. The dataset is natural, simple and clear. Texts are sampled from daily newspapers. To collect naturally written handwriting, forms are dictated to writers. The current version of our dataset includes 154 paragraphs written by 48 writers. It contains more than 3800 words and more than 19,400 characters. Handwritten texts are mainly written by researchers from different research centers. In order to use this dataset in a recognition system word extraction is needed. In this paper a new word extraction technique based on the Arabic handwriting cursive nature is also presented. The technique is applied to this dataset and good results are obtained. The results can be considered as a bench mark for future research to be compared with.

System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller

This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.

Optimization of Double Wishbone Suspension System with Variable Camber Angle by Hydraulic Mechanism

Simulation accuracy by recent dynamic vehicle simulation multidimensional expression significantly has progressed and acceptable results not only for passive vehicles but also for active vehicles normally equipped with advanced electronic components is also provided. Recently, one of the subjects that has it been considered, is increasing the safety car in design. Therefore, many efforts have been done to increase vehicle stability especially in the turn. One of the most important efforts is adjusting the camber angle in the car suspension system. Optimum control camber angle in addition to the vehicle stability is effective in the wheel adhesion on road, reducing rubber abrasion and acceleration and braking. Since the increase or decrease in the camber angle impacts on the stability of vehicles, in this paper, a car suspension system mechanism is introduced that could be adjust camber angle and the mechanism is application and also inexpensive. In order to reach this purpose, in this paper, a passive double wishbone suspension system with variable camber angle is introduced and then variable camber mechanism designed and analyzed for study the designed system performance, this mechanism is modeled in Visual Nastran software and kinematic analysis is revealed.

Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm

In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.

Structure of Covering-based Rough Sets

Rough set theory is a very effective tool to deal with granularity and vagueness in information systems. Covering-based rough set theory is an extension of classical rough set theory. In this paper, firstly we present the characteristics of the reducible element and the minimal description covering-based rough sets through downsets. Then we establish lattices and topological spaces in coveringbased rough sets through down-sets and up-sets. In this way, one can investigate covering-based rough sets from algebraic and topological points of view.