MATLAB-Based Graphical User Interface (GUI) for Data Mining as a Tool for Environment Management

The application of data mining to environmental monitoring has become crucial for a number of tasks related to emergency management. Over recent years, many tools have been developed for decision support system (DSS) for emergency management. In this article a graphical user interface (GUI) for environmental monitoring system is presented. This interface allows accomplishing (i) data collection and observation and (ii) extraction for data mining. This tool may be the basis for future development along the line of the open source software paradigm.

Effects of Ciprofloxacin and Levofloxacin Administration on Some Oxidative Stress Markers in the Rat

Fluoroquinolones are a group of antibiotics widely used because of their broad spectrum activity against both Gram-positive and Gram-negative bacteria. In this study, ciprofloxacin and levofloxacin were administered to rats at therapeutic doses to evaluate their effects on plasma arylesterase activity, as well as, on hepatic advanced oxidized protein products (AOPPs) and malondialdehyde (MDA) levels, as measures of oxidative stress. Ciprofloxacin (80 mg/kg body weight) and levofloxacin (40 mg/kg body weight) were administered to male albino rats for 7 and 14 days. The data obtained demonstrated that plasma arylesterase activity was significantly decreased by both drugs with ciprofloxacin administration inhibiting the activity by 29% and 30% while Levofloxacin treatment resulted in 35% and 30% inhibition, after 7 and 14 days treatment respectively. Hepatic AOPP and MDA levels were both elevated by these antibiotics. This study supplies further evidence that fluoroquinolones at therapeutic doses promote oxidative stress.

Empirical Analysis of the Reusability of Object-Oriented Program Code in Open-Source Software

Measuring the reusability of Object-Oriented (OO) program code is important to ensure a successful and timely adaptation and integration of the reused code in new software projects. It has become even more relevant with the availability of huge amounts of open-source projects. Reuse saves cost, increases the speed of development and improves software reliability. Measuring this reusability is not s straight forward process due to the variety of metrics and qualities linked to software reuse and the lack of comprehensive empirical studies to support the proposed metrics or models. In this paper, a conceptual model is proposed to measure the reusability of OO program code. A comprehensive set of metrics is used to compute the most significant factors of reusability and an empirical investigation is conducted to measure the reusability of the classes of randomly selected open-source Java projects. Additionally, the impact of using inner and anonymous classes on the reusability of their enclosing classes is assessed. The results obtained are thoroughly analyzed to identify the factors behind lack of reusability in open-source OO program code and the impact of nesting on it.

TTCN-3 Based Conformance Testing of a Node Monitoring Protocol for MANETs

As a node monitoring protocol, which is a part of network management, operates in distributed manner, conformance testing of such protocols is more tedious than testing a peer-to-peer protocol. Various works carried out to give the methodology to do conformance testing of distributed protocol. In this paper, we have presented a formal approach for conformance testing of a Node Monitoring Protocol, which uses both static and mobile agents, for MANETs. First, we use SDL to obtain MSCs, which represent the scenario descriptions by sequence diagrams, which in turn generate test sequences and test cases. Later, Testing and Test Control Notation Version-3 (TTCN-3) is used to execute test cases with respect to generated test sequences to know the conformance of protocol against the given specification. This approach shows, the effective conformance testing of the distributed protocols for the network with varying node density and complex behavior. Experimental results for the protocol scenario represent the effectiveness of the method used.

Construction Procedures Evaluation of Three Adjacent Tunnels and Excavation Step Effects

Since, both the relative position of tunnels and the construction procedure affect the soil movement and internal forces in the lining, it is of major concern to study the influence of these factors on the tunnel design. Construction procedures of tunnels have considerable effects on the magnitude of surface movements and lining stresses. This paper describes numerical analysis of construction procedure of a three adjacent shallow tunnels at high groundwater levels using the commercial finite difference software (FLAC-3D). The aim of this study is to determinate the most suitable construction procedure for the three tunnels and the optimum excavation step in Tehran Metro tunnels in order to optimize the surface settlements and lining stresses.

Connect among Green, Sustainability and Hotel Industry: A Prospective Simulation Study

This review paper aims at understanding the importance of implementing sustainable green practices in the current hotel industry and the perception of the same from the point of view of the customers as well as the industry experts. Many hotels have benefited from green management such as enhanced reputation of the firm and more worth customers. For the business standing, it reduces business’s cost for posting advertisements and the clear hotel’s orientation shows hotels’ positive image which might increase employees’ recognition toward the business. Sustainability in business is the growth in lively processes which enable people to understand the potential to protect the Earth’s existent support systems. Well, looking to the future today’s green concerns will definitely become facet of more synchronized business environment, perhaps the concerns discussed in this study, may exchange a few words which hotels may consider in near future to widen awareness and improve business model.

Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Nullity of t-Tupple Graphs

The nullity η(G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f(w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced subgraph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the endvertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived  and determined for some special types of graphs,  Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs.

Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation

Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On the decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by the decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.

Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum

The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations.

Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives Using Taguchi Experimental Design Methodology

The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 polycyclic aromatic hydrocarbons (PAHs) and derivates, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For Gasoline (SP95-E10) and Diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.

Grain Size Effect on Durability of Bioclogging Treatment

In this work, the bioclogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation-resaturation. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1” presents grain sizes between 0.4 and 4mm. The second material called "material 2" is composed of grains with size varying between 1 and 10mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-resaturation for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bioclogging treatment in this material. 

An Empirical Analysis of the Impact of Selected Macroeconomic Variables on Capital Formation in Libya (1970–2010)

This study is carried out to provide an insight into the analysis of the impact of selected macro-economic variables on gross fixed capital formation in Libya using annual data over the period (1970-2010). The importance of this study comes from the ability to show the relative important factors that impact the Libyan gross fixed capital formation. This understanding would give indications to decision makers on which policy they must focus to stimulate the economy. An Autoregressive Distributed Lag (ARDL) modeling process is employed to investigate the impact of the Gross Domestic Product, Monetary Base and Trade Openness on Gross Fixed Capital Formation in Libya. The results of this study reveal that there is an equilibrium relationship between capital formation and its determinants. The results also indicate that GDP and trade openness largely explain the pattern of capital formation in Libya. The findings and recommendations provide vital information relevant for policy formulation and implementation aimed to improve capital formation in Libya.

Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, high voltage direct current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of liquid silicone rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to nano-aluminum trihydrate (ATH) were confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nanofiller dispersion state. The LSR nanocomposite was prepared by compounding LSR filled nano-sized ATH filler. The dc insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without a filler. 

Achieving Success in NPD Projects

The new product development (NPD) literature emphasizes the importance of introducing new products on the market for continuing business success. New products are responsible for employment, economic growth, technological progress, and high standards of living. Therefore, the study of NPD and the processes through which they emerge is important. The goal of our research is to propose a framework of critical success factors, metrics, and tools and techniques for implementing metrics for each stage of the new product development (NPD) process. An extensive literature review was undertaken to investigate decades of studies on NPD success and how it can be achieved. These studies were scanned for common factors for firms that enjoyed success of new products on the market. The paper summarizes NPD success factors, suggests metrics that should be used to measure these factors, and proposes tools and techniques to make use of these metrics. This was done for each stage of the NPD process, and brought together in a framework that the authors propose should be followed for complex NPD projects. While many studies have been conducted on critical success factors for NPD, these studies tend to be fragmented and focus on one or a few phases of the NPD process. 

Tomato Fruit Color Changes During Ripening On Vine

Tomato (Lycopersicon esculentum Mill.) hybrid 'Brooklyn' was investigated at the LRCAF Institute of Horticulture. For investigation, five green tomatoes, which were grown on vine, were selected. Color measurements were made in the greenhouse with the same selected tomato fruits (fruits were not harvested and were growing and ripening on tomato vine through all experiment) in every two days while tomatoes fruits became fully ripen. Study showed that color index L has tendency to decline and established determination coefficient (R2) was 0.9504. Also, hue angle has tendency to decline during tomato fruit ripening on vine and it’s coefficient of determination (R2) reached – 0.9739. Opposite tendency was determined with color index a*, which has tendency to increase during tomato ripening and that was expressed by polynomial trendline where coefficient of determination (R2) reached – 0.9592.

Dynamic Analysis by a Family of Time Marching Procedures Based On Numerically Computed Green’s Functions

In this work, a new family of time marching procedures based on Green’s function matrices is presented. The formulation is based on the development of new recurrence relationships, which employ time integral terms to treat initial condition values. These integral terms are numerically evaluated taking into account Newton-Cotes formulas. The Green’s matrices of the model are also numerically computed, taking into account the generalized-α method and subcycling techniques. As it is discussed and illustrated along the text, the proposed procedure is efficient and accurate, providing a very attractive time marching technique. 

Numerical Studies on the Performance of Finned-Tube Heat Exchanger

Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc… Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables and also maximizing the temperature difference and pressure drop was suggested by applying DOE. During this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using ANOVA to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition.

Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

In this paper, we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wideband characteristics of the channel: root mean square (RMS) delay spread characteristics and Mean excess delay, is also investigated.

Studies on Storage Behavior of Cabbage Head as Influenced by Organic Amendments and Inorganic Fertilizers

The influence of organic amendments and inorganic fertilizers on cabbage head was investigated to determine their effect on storage behavior and organoleptic quality. Field cabbage was raised by combining fourteen different treatments comprising of organic amendments and inorganic fertilizers at different levels. The result showed that nutrient schedule of the crop significantly influenced the physiological loss in weight (PLW) and organoleptic quality of cabbage head and judicious selection of nutrient combination can extend the storage life and reduce the post harvest detoriaration of head. The nutrient schedule comprising of higher level of FYM (16 t ha-1) along with 75% of recommended inorganic fertilizers in conjugation with seedling inoculation of biofertilizer emerged as potential nutrient source for improving storage life, marketability and maintaining nutritional and organoleptic quality under ambient storage condition.