DWT-SATS Based Detection of Image Region Cloning

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency subband of the DWT of the suspicious image thereby leaving valuable information in the other three subbands, the proposed algorithm simultaneously extracts features from all the four subbands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates. 

Formal Models of Sanitary Inspections Teams Activities

This paper presents methods for formal modeling of activities in the area of sanitary inspectors outbreak of food-borne diseases. The models allow you to measure the characteristics of the activities of sanitary inspection and as a result allow improving the performance of sanitary services and thus food security.

Screening of Minimal Salt Media for Biosurfactant Production by Bacillus spp.

Crude oil is a major source of global energy. The major problem is its widespread use and demand resulted is in increasing environmental pollution. One associated pollution problem is ‘oil spills’. Oil spills can be remediated with the use of chemical dispersants, microbial biodegradation and microbial metabolites such as biosurfactants. Four different minimal salt media for biosurfactant production by Bacillus isolated from oil contaminated sites from Oman were screened. These minimal salt media were supplemented with either glucose or sucrose as a carbon source. Among the isolates, W16 and B30 produced the most active biosurfactants. Isolate W16 produced better biosurfactant than the rest, and reduced surface tension (ST) and interfacial tension (IFT) to 25.26mN/m and 2.29mN/m respectively within 48h which are characteristics for removal of oil in contaminated sites. Biosurfactant was produced in bulk and extracted using acid precipitation method. Thin Layer Chromatography (TLC) of acid precipitate biosurfactant revealed two concentrated bands. Further studies of W16 biosurfactant in bioremediation of oil spills are recommended.

Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVP­s­) in ordinary differential equations (ODE­s­) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Improvement of Salt Tolerance in Saudi Arabian Wheat by Seed Priming or Foliar Spray with Salicylic Acid

The effect of exogenous application; seed priming or foliar spraying of salicylic acid (SA) on Yecora Rojo and Paragon wheat cv. under NaCl-salinity. Gas exchange parameters, growth parameters, yield and yield components were reduced in both cultivars under salinity stress with foliar spray and soaking seeds. Exogenous application of SA through foliar spraying or seed soaking showed a slight increases or decreases with the application method or between cultivars. SA foliar spraying exhibited a slight improvement over SA seed soaking in most parameters, particularly in Paragon. Although, seed soaking was less effective than foliar spraying, it was a slightly better with Yecora Rojo in some parameters. However, the low SA concentration; 0.5mM tended to improve most parameters in both cultivars. From data of the experiment, it has been concluded that the effect of SA depends on cultivar genotype and SA concentration.

Using Hermite Function for Solving Thomas-Fermi Equation

In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.

Proposal for Cost Calculation of Warehouse Processes and Its Usage for Setting Standards for Performance Evaluation

This paper describes a proposal for cost calculation of warehouse processes and its usage for setting standards for performance evaluation. One of the most common options of monitoring process performance is benchmarking. The typical outcome is whether the monitored object is better or worse than an average or standard. Traditional approaches, however, cannot find any specific opportunities to improve performance or eliminate inefficiencies in processes. Higher process efficiency can be achieved for example by cost reduction assuming that the same output is generated. However, costs can be reduced only if we know their structure and we are able to calculate them accurately. In the warehouse process area it is rather difficult because in most cases we have available only aggregated values with low explanatory ability. The aim of this paper is to create a suitable method for calculating the storage costs. At the end is shown a practical example of process calculation.

Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference  spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signalis is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Square Printed Monopole Antenna for Wireless Applications

In this article design and optimization of square printed monopole antenna for wireless application is proposed. Theory of characteristics mode (TCM) is used for analysis of current modes on the antenna. TCM analysis shows that beveled ground plane improves the impedance bandwidth. The antenna operates over the frequency range from 1.860 GHz to 5 GHz for a VSWR ≤ 2, covering the GSM (1900-1990MHz), IMT-2000(1920-2170MHz), Bluetooth (2.400-2484 MHz) and lower band of ultrawideband (UWB). Stable radiation pattern shows minimal pulse distortion. The radiation pattern is omni-directional along the H-plane and figure of eight along the E-plane. Size of proposed antenna is 39 mm x 29 mm x 1.6mm. Antenna is simulated using CAD FEKO suite (6.2) using method of moment. A prototype antenna is fabricated using FR4 dielectric substrate with a dielectric constant of 4.4 and loss tangent of 0.02 to validate the simulated and measured results of the proposed antenna. Measured results are in good agreement with simulated results.

Monthly River Flow Prediction Using a Nonlinear Prediction Method

River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.

The Development of the Quality Management Processes for the Building and Environment of the Basic Education Schools

The objectives of this research was to design and develop a quality management of the school buildings and environment. A quantitative and qualitative mixed research methodology was used. The population sample included 14 directors of primary schools. Two research tools were used. The first research tool included an in-depth interview and questionnaire. The second research tool included the Quality Business Process and Quality Work Procedure, and a Key Performance Indicator of each activity. The statistics included mean and standard deviation. The findings for the development of a quality management process of buildings and environment administration of the basic schools consisted of one quality business process (QBP) and seven quality work processes (QWP). The result from the experts’ evaluation revealed that the process and implementation of quality management of the school buildings and environment has passed the inspection process with consensus. This implies that the process of quality management of the school buildings and environment is suitable for implementation. Moreover, the level of agreement in the feasibility of the implementation of this plan had the mean in the range of 0.64-1.00 which suggests the design of the new plan is acceptable.

The Study on the Stationarity of Housing Price-to-Rent and Housing Price-to-Income Ratios in China

This paper aims to examine whether a bubble is present in the housing market of China. Thus, we use the housing  price-to-income ratios and housing price-to-rent ratios of 35 cities from 1998 to 2010. The methods of the panel KSS unit root test with a  Fourier function and the SPSM process are likewise used. The panel  KSS unit root test with a Fourier function considers the problem of  non-linearity and structural changes, and the SPSM process can avoid  the stationary time series from dominating the result-generated bias.  Through a rigorous empirical study, we determine that the housing  price-to-income ratios are stationary in 34 of the 35 cities in China.  Only Xining is non-stationary. The housing price-to-rent ratios are  stationary in 32 of the 35 cities in China. Chengdu, Fuzhou, and  Zhengzhou are non-stationary. Overall, the housing bubbles are not a  serious problem in China at the time.  

An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers

According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.

Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts

The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (

Management by Sufficient Economy Philosophy for Hospitality Business in Samut Songkram

The objectives of this research are to know the management form of Samut Songkram lodging entrepreneurs with sufficient economy framework, to know the threat that affect this business and drawing the fit model for this province in order to sustain their business with Samut Songkram style. What will happen if they do not use this philosophy? Will they have a cash short fall? The data and information are collected by informal discussion with 8 managers and 400 questionnaires. We will use a mix of methods both qualitative research and quantitative research for our study. Bent Flyvbjerg’s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small and medium business firms solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will use to practice in other areas of our country. 

A Universal Approach to Categorize Failures in Production

The increasing interconnectedness and complexity of  production processes raise the susceptibility of production systems to  failure. Therefore, the ability to respond quickly to failures is  increasingly becoming a competitive factor. The research project  "Sustainable failure management in manufacturing SMEs" is  developing a methodology to identify failures in the production and  select preventive and reactive measures in order to correct failures  and to establish sustainable failure management systems.  

Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

In this study, thermo elastic stress analysis is  performed on a cylinder made of laminated isotropic materials under  thermomechanical loads. Laminated cylinders have many  applications such as aerospace, automotive and nuclear plant in the  industry. These cylinders generally performed under  thermomechanical loads. Stress and displacement distribution of the  laminated cylinders are determined using by analytical method both  thermal and mechanical loads. Based on the results, materials  combination plays an important role on the stresses distribution along  the radius. Variation of the stresses and displacements along the  radius are presented as graphs. Calculations program are prepared  using MATLAB® by authors.  

Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

Controlling Transient Flow in Pipeline Systems by Desurging Tank with Automatic Air Control

Desurging tank with automatic air control “DTAAC” is a water hammer protection device, operates either an open or closed surge tank according to the water level inside the surge tank, with the volume of air trapped in the filling phase, this protection device has the advantages of its easy maintenance, and does not need to run any external energy source (air compressor). A computer program has been developed based on the characteristic method to simulate flow transient phenomena in pressurized water pipeline systems, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurring in this phenomena. The developed model applied to a simple main water pipeline system: pump combined with DTAAC connected to a reservoir.  The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the DTAAC reduces the unfavorable effects of the transients.

Development of a Biomechanical Method for Ergonomic Evaluation: Comparison with Observational Methods

A wide variety of observational methods have been developed to evaluate the ergonomic workloads in manufacturing. However, the precision and accuracy of these methods remain a subject of debate. The aims of this study were to develop biomechanical methods to evaluate ergonomic workloads and to compare them with observational methods. Two observational methods, i.e. SCANIA Ergonomic Standard (SES) and Rapid Upper Limb Assessment (RULA), were used to assess ergonomic workloads at two simulated workstations. They included four tasks such as tightening & loosening, attachment of tubes and strapping as well as other actions. Sensors were also used to measure biomechanical data (Inclinometers, Accelerometers, and Goniometers). Our findings showed that in assessment of some risk factors both RULA & SES were in agreement with the results of biomechanical methods. However, there was disagreement on neck and wrist postures. In conclusion, the biomechanical approach was more precise than observational methods, but some risk factors evaluated with observational methods were not measurable with the biomechanical techniques developed.