Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

A Homogenisation Procedure for the Free Vibration Analysis of Functionally Graded Beams at Large Vibration Amplitudes

The purpose of the present paper is to show that the problem of geometrically nonlinear free vibrations of functionally graded beams (FGB) with immovable ends can be reduced to that of isotropic homogeneous beams with effective bending stiffness and axial stiffness parameters by using an homogenization procedure. The material properties of the functionally graded composites examined are assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the Euler-Bernouilli beam theory and the Von Kármán geometrical nonlinearity assumptions. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results. The non-dimensional curvatures associated to the nonlinear fundamental mode are also given for various vibration amplitudes in the case of clamped-clamped FGB.

Geometrically Non-Linear Axisymmetric Free Vibrations of Thin Isotropic Annular Plates

The effects of large vibration amplitudes on the first axisymetric mode shape of thin isotropic annular plates having both edges clamped are examined in this paper. The theoretical model based on Hamilton’s principle and spectral analysis by using a basis of Bessel’s functions is adapted اhere to the case of annular plates. The model effectively reduces the large amplitude free vibration problem to the solution of a set of non-linear algebraic equations. The governing non-linear eigenvalue problem has been linearised in the neighborhood of each resonance and a new one-step iterative technique has been proposed as a simple alternative method of solution to determine the basic function contributions to the non-linear mode shape considered. Numerical results are given for the first non-linear mode shape for a wide range of vibration amplitudes. For each value of the vibration amplitude considered, the corresponding contributions of the basic functions defining the non-linear transverse displacement function and the associated non-linear frequency, the membrane and bending stress distributions are given. By comparison with the iterative method of solution, it was found that the present procedure is efficient for a wide range of vibration amplitudes, up to at least 1.8 times the plate thickness,

Structural and Computational Studies of N-[(2,6-Diethylphenyl) carbamothioyl]-2,2-diphenylacetamide, N-[(3 Ethylphenyl) carbamothioyl]-2,2-diphenylacetamide and 2,2-Diphenyl-N-{[2-(trifluoromethyl) phenyl]carbamothioyl}acetamide

Theoretical investigations are performed by DFT method of B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p) basis sets for three carbonyl thiourea compounds, namely N-[(2,6-Diethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound I), N-[(3-Ethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound II) and 2,2-Diphenyl-N-{[2-(trifluoromethyl)phenyl]carbamothioyl}acetamide (Compound III). Theoretical calculations for bond parameters, harmonic vibration frequencies and isotropic chemical shifts are in good agreement with the experimental results. The calculated molecular vibrations show good correlation values, which are 0.998 and 0.999 with the experimental data. The energy gap for compounds I, II and III calculated at B3LYP/6-31G+(2d,p) basis set are 4.455866117, 4.297495791 and 4.313550514 eV respectively, while for B3LYP/6-311G+(2d,p) basis set the energy gap obtained are 4.453689205 (Compound I), 4.311373603 (Compound II) and 4.315727426 (Compound III) eV.

Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Effect of pH and Ionic Exchange on the Reactivity of Bioglass/Chitosan Composites Used as a Bone Graft Substitute

Chitosan (CH) material reinforced by bioactive glass (46S6) was fabricated. 46S6 containing 17% wt% CH was studied in vitro and in vivo. Physicochemical techniques, such as Fourier transform infrared spectroscopy (FT-IR), coupled plasma optical emission spectrometry (ICP-OES) analysis were used. The behavior of 46S6CH17 was studied by measuring the in situ pH in a SBF solution. The 46S6CH17 was implanted in the rat femoral condyl. In vitro 46S6CH17 gave an FTIR - spectrum in which three absorption bands with the maxima at 565, 603 and 1039cm-1 after 3 days of soaking in physiological solution. They are assigned to stretching vibrations of PO4^3- group in phosphate crystalline. Moreover, the pH measurement was decreased in the SBF solution. The stability of the calcium phosphate precipitation depended on the pH value. In vivo, a rise in the Ca and phosphate P ions concentrations in the implanted microenvironment was determined.

Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Large Vibration Amplitude of Circular Functionally Graded Plates Resting on Pasternak Foundations

In the present study, the problem of geometrically nonlinear free vibrations of functionally graded circular plates (FGCP) resting on Pasternak elastic foundation with immovable ends was studied. The material properties of the functionally graded composites examined were assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the classical Plate theory and the Von Kármán geometrical nonlinearity assumptions. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results dealing with the problem of functionally graded plates. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the FGCP has been studied. The effect of the linear and shearing foundations is to decrease the frequency ratio, where it increases with the effect of the nonlinear foundation stiffness. 

The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces

This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.

Effects Edge end Free-free Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with Ring based on Third Order Shear Deformation Theory using Hamilton's Principle

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Simulation of Particle Damping under Centrifugal Loads

Particle damping is a technique to reduce the structural vibrations by means of placing small metallic particles inside a cavity that is attached to the structure at location of high vibration amplitudes. In this paper, we have presented an analytical model to simulate the particle damping of two dimensional transient vibrations in structure operating under high centrifugal loads. The simulation results show that this technique remains effective as long as the ratio of the dynamic acceleration of the structure to the applied centrifugal load is more than 0.1. Particle damping increases with the increase of particle to structure mass ratio. However, unlike to the case of particle damping in the absence of centrifugal loads where the damping efficiency strongly depends upon the size of the cavity, here this dependence becomes very weak. Despite the simplicity of the model, the simulation results are considerably in good agreement with the very scarce experimental data available in the literature for particle damping under centrifugal loads.

Finite Element Modelling of Ground Vibrations Due to Tunnelling Activities

This paper presents the use of three-dimensional finite elements coupled with infinite elements to investigate the ground vibrations at the surface in terms of the peak particle velocity (PPV) due to construction of the first bore of the Dublin Port Tunnel. This situation is analysed using a commercially available general-purpose finite element package ABAQUS. A series of parametric studies is carried out to examine the sensitivity of the predicted vibrations to variations in the various input parameters required by finite element method, including the stiffness and the damping of ground. The results of this study show that stiffness has a more significant effect on the PPV rather than the damping of the ground.

Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.

Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation

In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.

Mechanism of Damping in Welded Structures using Finite Element Approach

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.

Dynamic Optimization of Industrial Servomechanisms using Motion Laws Based On Bezier Curves

The motion planning procedure described in this paper has been developed in order to eliminate or reduce the residual vibrations of electromechanical positioning systems, without augmenting the motion time (usually imposed by production requirements), nor introducing overtime for vibration damping. The proposed technique is based on a suitable choice of the motion law assigned to the servomotor that drives the mechanism. The reference profile is defined by a Bezier curve, whose shape can be easily changed by modifying some numerical parameters. By means of an optimization technique these parameters can be modified without altering the continuity conditions imposed on the displacement and on its time derivatives at the initial and final time instants.

Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling

This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.

Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Pseudo-polynomial Motion Commands for Vibration Suppression of Belt-driven Rotary Platforms

The motion planning technique described in this paper has been developed to eliminate or reduce the residual vibrations of belt-driven rotary platforms, while maintaining unchanged the motion time and the total angular displacement of the platform. The proposed approach is based on a suitable choice of the motion command given to the servomotor that drives the mechanical device; this command is defined by some numerical coefficients which determine the shape of the displacement, velocity and acceleration profiles. Using a numerical optimization technique, these coefficients can be changed without altering the continuity conditions imposed on the displacement and its time derivatives at the initial and final time instants. The proposed technique can be easily and quickly implemented on an actual device, since it requires only a simple modification of the motion command profile mapped in the memory of the electronic motion controller.