Movement of Location of Tip Vortex Cavitation along Blade Edge due to Reduction of Flow Rate in an Axial Pump

Tip vortex cavitation is one of well known patterns of cavitation phenomenon which occurs in axial pumps. This pattern of cavitation occurs due to pressure difference between the pressure and suction sides of blades of an axial pump. Since the pressure in the pressure side of the blade is higher than the pressure in its suction side, thus a very small portion of liquid flow flows back from pressure side to the suction side. This fact is cause of tip vortex cavitation and gap cavitation that may occur in axial pumps. In this paper the results of our experimental investigation about movement of tip vortex cavitation along blade edge due to reduction of pump flow rate in an axial pump is reported. Results show that reduction of pump flow rate in conjunction with increasing of outlet pressure causes movement of tip vortex cavitation along blade edge towards the blade tip. Results also show that by approaching tip vortex cavitation to the blade tip, vortex tip pattern of cavitation replaces with a cavitation phenomenon on the blade tip. Furthermore by further reduction of pump flow rate and increasing of outlet pressure, an unstable cavitation phenomenon occurs between each blade leading edge and the next blade trailing edge.

Stability of Alliances between Service Providers

Three service providers in competition, try to optimize their quality of service / content level and their service access price. But, they have to deal with uncertainty on the consumers- preferences. To reduce their uncertainty, they have the opportunity to buy information and to build alliances. We determine the Shapley value which is a fair way to allocate the grand coalition-s revenue between the service providers. Then, we identify the values of β (consumers- sensitivity coefficient to the quality of service / contents) for which allocating the grand coalition-s revenue using the Shapley value guarantees the system stability. For other values of β, we prove that it is possible for the regulator to impose a per-period interest rate maximizing the market coverage under equal allocation rules.

Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration

This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.

Effect of Interior Brick-infill Partitions on the Progressive Collapse Potential of a RC Building: Linear Static Analysis Results

Interior brick-infill partitions are usually considered as non-structural components, and only their weight is accounted for in practical structural design. In this study, the brick-infill panels are simulated by compression struts to clarify their effect on the progressive collapse potential of an earthquake-resistant RC building. Three-dimensional finite element models are constructed for the RC building subjected to sudden column loss. Linear static analyses are conducted to investigate the variation of demand-to-capacity ratio (DCR) of beam-end moment and the axial force variation of the beams adjacent to the removed column. Study results indicate that the brick-infill effect depends on their location with respect to the removed column. As they are filled in a structural bay with a shorter span adjacent to the column-removed line, more significant reduction of DCR may be achieved. However, under certain conditions, the brick infill may increase the axial tension of the two-span beam bridging the removed column.

Ethanol Production from Sugarcane Bagasse by Means of Enzymes Produced by Solid State Fermentation Method

Nowadays there is a growing interest in biofuel production in most countries because of the increasing concerns about hydrocarbon fuel shortage and global climate changes, also for enhancing agricultural economy and producing local needs for transportation fuel. Ethanol can be produced from biomass by the hydrolysis and sugar fermentation processes. In this study ethanol was produced without using expensive commercial enzymes from sugarcane bagasse. Alkali pretreatment was used to prepare biomass before enzymatic hydrolysis. The comparison between NaOH, KOH and Ca(OH)2 shows NaOH is more effective on bagasse. The required enzymes for biomass hydrolysis were produced from sugarcane solid state fermentation via two fungi: Trichoderma longibrachiatum and Aspergillus niger. The results show that the produced enzyme solution via A. niger has functioned better than T. longibrachiatum. Ethanol was produced by simultaneous saccharification and fermentation (SSF) with crude enzyme solution from T. longibrachiatum and Saccharomyces cerevisiae yeast. To evaluate this procedure, SSF of pretreated bagasse was also done using Celluclast 1.5L by Novozymes. The yield of ethanol production by commercial enzyme and produced enzyme solution via T. longibrachiatum was 81% and 50% respectively.

Correlation-based Feature Selection using Ant Colony Optimization

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Automatic Map Simplification for Visualization on Mobile Devices

The visualization of geographic information on mobile devices has become popular as the widespread use of mobile Internet. The mobility of these devices brings about much convenience to people-s life. By the add-on location-based services of the devices, people can have an access to timely information relevant to their tasks. However, visual analysis of geographic data on mobile devices presents several challenges due to the small display and restricted computing resources. These limitations on the screen size and resources may impair the usability aspects of the visualization applications. In this paper, a variable-scale visualization method is proposed to handle the challenge of small mobile display. By merging multiple scales of information into a single image, the viewer is able to focus on the interesting region, while having a good grasp of the surrounding context. This is essentially visualizing the map through a fisheye lens. However, the fisheye lens induces undesirable geometric distortion in the peripheral, which renders the information meaningless. The proposed solution is to apply map generalization that removes excessive information around the peripheral and an automatic smoothing process to correct the distortion while keeping the local topology consistent. The proposed method is applied on both artificial and real geographical data for evaluation.

Numerical Study of Iterative Methods for the Solution of the Dirichlet-Neumann Map for Linear Elliptic PDEs on Regular Polygon Domains

A generalized Dirichlet to Neumann map is one of the main aspects characterizing a recently introduced method for analyzing linear elliptic PDEs, through which it became possible to couple known and unknown components of the solution on the boundary of the domain without solving on its interior. For its numerical solution, a well conditioned quadratically convergent sine-Collocation method was developed, which yielded a linear system of equations with the diagonal blocks of its associated coefficient matrix being point diagonal. This structural property, among others, initiated interest for the employment of iterative methods for its solution. In this work we present a conclusive numerical study for the behavior of classical (Jacobi and Gauss-Seidel) and Krylov subspace (GMRES and Bi-CGSTAB) iterative methods when they are applied for the solution of the Dirichlet to Neumann map associated with the Laplace-s equation on regular polygons with the same boundary conditions on all edges.

Reliable Face Alignment Using Two-Stage AAM

AAM (active appearance model) has been successfully applied to face and facial feature localization. However, its performance is sensitive to initial parameter values. In this paper, we propose a two-stage AAM for robust face alignment, which first fits an inner face-AAM model to the inner facial feature points of the face and then localizes the whole face and facial features by optimizing the whole face-AAM model parameters. Experiments show that the proposed face alignment method using two-stage AAM is more reliable to the background and the head pose than the standard AAM-based face alignment method.

Development of Reliable Web-Based Laboratories for Developing Countries

In online context, the design and implementation of effective remote laboratories environment is highly challenging on account of hardware and software needs. This paper presents the remote laboratory software framework modified from ilab shared architecture (ISA). The ISA is a framework which enables students to remotely acccess and control experimental hardware using internet infrastructure. The need for remote laboratories came after experiencing problems imposed by traditional laboratories. Among them are: the high cost of laboratory equipment, scarcity of space, scarcity of technical personnel along with the restricted university budget creates a significant bottleneck on building required laboratory experiments. The solution to these problems is to build web-accessible laboratories. Remote laboratories allow students and educators to interact with real laboratory equipment located anywhere in the world at anytime. Recently, many universities and other educational institutions especially in third world countries rely on simulations because they do not afford the experimental equipment they require to their students. Remote laboratories enable users to get real data from real-time hand-on experiments. To implement many remote laboratories, the system architecture should be flexible, understandable and easy to implement, so that different laboratories with different hardware can be deployed easily. The modifications were made to enable developers to add more equipment in ISA framework and to attract the new developers to develop many online laboratories.

Compressed Adobe Technology Analyses as Local Sustainable Materials for Retrofitting against Earthquake Approaching India Experiences

Due to its geographical location, Iran is considered one of the earthquake-prone areas where the best way to decrease earthquake effects is supposed to be strengthening the buildings. Even though, one idea suggests that the use of adobe in constructing buildings be prohibited for its weak function especially in earthquake-prone areas, however, regarding ecological considerations, sustainability and other local skills, another idea pays special attention to adobe as one of the construction technologies which is popular among people. From the architectural and technological point of view, as strong sustainable building construction materials, compressed adobe construction materials make most of the construction in urban or rural areas ranging from small to big industrial buildings used to replace common earth blocks in traditional systems and strengthen traditional adobe buildings especially against earthquake. Mentioning efficient construction using compressed adobe system as a reliable replacement for traditional soil construction materials , this article focuses on the experiences of India in the fields of sustainable development of compressed adobe systems in the form of system in which the compressed soil is combined with cement, load bearing building with brick/solid concrete block system, brick system using rat trap bond, metal system with adobe infill and finally emphasizes on the use of these systems in the earthquake-struck city of Bam in Iran.

Error Propagation of the Hidden-Point Bar Method: Effect of Bar Geometry

The hidden-point bar method is useful in many surveying applications. The method involves determining the coordinates of a hidden point as a function of horizontal and vertical angles measured to three fixed points on the bar. Using these measurements, the procedure involves calculating the slant angles, the distances from the station to the fixed points, the coordinates of the fixed points, and then the coordinates of the hidden point. The propagation of the measurement errors in this complex process has not been fully investigated in the literature. This paper evaluates the effect of the bar geometry on the position accuracy of the hidden point which depends on the measurement errors of the horizontal and vertical angles. The results are used to establish some guidelines regarding the inclination angle of the bar and the location of the observed points that provide the best accuracy.

A Bi-Objective Model for Location-Allocation Problem within Queuing Framework

This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing framework. We formulate this model with two perspectives simultaneously: (i) customers and (ii) service provider. The objectives of the model are to minimize (i) the total expected travelling and waiting time and (ii) the average facility idle-time. This model represents a mixed-integer nonlinear programming problem which belongs to the class of NP-hard problems. In addition, to solve the model, two metaheuristic algorithms including nondominated sorting genetic algorithms (NSGA-II) and non-dominated ranking genetic algorithms (NRGA) are proposed. Besides, to evaluate the performance of the two algorithms some numerical examples are produced and analyzed with some metrics to determine which algorithm works better.

A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction

In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.

Efficient Numerical Model for Studying Bridge Pier Collapse in Floods

High level and high velocity flood flows are potentially harmful to bridge piers as evidenced in many toppled piers, and among them the single-column piers were considered as the most vulnerable. The flood flow characteristic parameters including drag coefficient, scouring and vortex shedding are built into a pier-flood interaction model to investigate structural safety against flood hazards considering the effects of local scouring, hydrodynamic forces, and vortex induced resonance vibrations. By extracting the pier-flood simulation results embedded in a neural networks code, two cases of pier toppling occurred in typhoon days were reexamined: (1) a bridge overcome by flash flood near a mountain side; (2) a bridge washed off in flood across a wide channel near the estuary. The modeling procedures and simulations are capable of identifying the probable causes for the tumbled bridge piers during heavy floods, which include the excessive pier bending moments and resonance in structural vibrations.

A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem

The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).

Electronic Voting System using Mobile Terminal

Electronic voting (E-voting) using an internet has been recently performed in some nations and regions. There is no spatial restriction which a voter directly has to visit the polling place, but an e-voting using an internet has to go together the computer in which the internet connection is possible. Also, this voting requires an access code for the e-voting through the beforehand report of a voter. To minimize these disadvantages, we propose a method in which a voter, who has the wireless certificate issued in advance, uses its own cellular phone for an e-voting without the special registration for a vote. Our proposal allows a voter to cast his vote in a simple and convenient way without the limit of time and location, thereby increasing the voting rate, and also ensuring confidentiality and anonymity.

Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft

This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.

Directors- Islamic Code of Ethics

This paper discusses a new model of Islamic code of ethics for directors. Several corporate scandals and local (example Transmile and Megan Media) and overseas corporate (example Parmalat and Enron) collapses show that the current corporate governance and regulatory reform are unable to prevent these events from recurring. Arguably, the code of ethics for directors is under research and the current code of ethics only concentrates on binding the work of the employee of the organization as a whole, without specifically putting direct attention to the directors, the group of people responsible for the performance of the company. This study used a semi-structured interview survey of well-known Islamic scholars such as the Mufti to develop the model. It is expected that the outcome of the research is a comprehensive model of code of ethics based on the Islamic principles that can be applied and used by the company to construct a code of ethics for their directors.

Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.