Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks

This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.

Fast Painting with Different Colors Using Cross Correlation in the Frequency Domain

In this paper, a new technique for fast painting with different colors is presented. The idea of painting relies on applying masks with different colors to the background. Fast painting is achieved by applying these masks in the frequency domain instead of spatial (time) domain. New colors can be generated automatically as a result from the cross correlation operation. This idea was applied successfully for faster specific data (face, object, pattern, and code) detection using neural algorithms. Here, instead of performing cross correlation between the input input data (e.g., image, or a stream of sequential data) and the weights of neural networks, the cross correlation is performed between the colored masks and the background. Furthermore, this approach is developed to reduce the computation steps required by the painting operation. The principle of divide and conquer strategy is applied through background decomposition. Each background is divided into small in size subbackgrounds and then each sub-background is processed separately by using a single faster painting algorithm. Moreover, the fastest painting is achieved by using parallel processing techniques to paint the resulting sub-backgrounds using the same number of faster painting algorithms. In contrast to using only faster painting algorithm, the speed up ratio is increased with the size of the background when using faster painting algorithm and background decomposition. Simulation results show that painting in the frequency domain is faster than that in the spatial domain.

Bioremediation of MEG, DEG, and TEG: Potential of Burhead Plant and Soil Microorganisms

The aim of this work was to investigate the potential of soil microorganisms and the burhead plant, as well as the combination of soil microorganisms and plants to remediate monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) in synthetic wastewater. The result showed that a system containing both burhead plant and soil microorganisms had the highest efficiency in EGs removal. Around 100% of MEG and DEG and 85% of TEG were removed within 15 days of the experiments. However, the burhead plant had higher removal efficiency than soil microorganisms for MEG and DEG but the same for TEG in the study systems. The removal rate of EGs in the study system related to the molecular weight of the compounds and MEG, the smallest glycol, was removed faster than DEG and TEG by both the burhead plant and soil microorganisms in the study system.

Infrared Lamp Array Simulation Technology Used during Satellite Thermal Testing

A satellite is being integrated and tested by BISEE (Beijing Institute of Spacecraft Environment Engineering). This paper describes the infrared lamp array simulation technology used for satellite thermal balance and thermal vacuum test. These tests were performed in KM6 space environmental simulator in Beijing, China. New software and hardware developed by BISEE, along with enhanced heat flux uniformity, provided for well accomplished thermal balance and thermal vacuum tests. The flux uniformity of lamp array was satisfied with test requirement. Monitored background radiometer offered reliable heat flux measurements with remarkable repeatability. Simulation software supplied accurate thermal flux distribution predictions.

Effect of Calcium Chloride on Rheological Properties and Structure of Inulin - Whey Protein Gels

The rheological properties, structure and potential synergistic interactions of whey proteins (1-6%) and inulin (20%) in mixed gels in the presence of CaCl2 was the aim of this study. Whey proteins have a strong influence on inulin gel formation. At low concentrations (2%) whey proteins did not impair in inulin gel formation. At higher concentration (4%) whey proteins impaired inulin gelation and inulin impaired the formation of a Ca2+-induced whey protein network. The presence of whey proteins at a level allowing for protein gel network formation (6%) significantly increased the rheological parameters values of the gels. SEM micrographs showed that whey protein structure was coated by inulin moieties which could make the mixed gels firmer. The protein surface hydrophobicity measurements did not exclude synergistic interactions between inulin and whey proteins, however. The use of an electrophoretic technique did not show any stable inulin-whey protein complexes.

Artificial Neural Networks for Classifying Magnetic Measurements in Tokamak Reactors

This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.

Technical and Economic Impacts of Distributed Generation on Distribution System

Distributed Generation (DG) in the form of renewable power generation systems is currently preferred for clean power generation. It has a significant impact on the distribution systems. This impact may be either positively or negatively depending on the distribution system, distributed generator and load characteristics. In this works, an overview of DG is briefly introduced. The technology of DG is also listed while the technical impacts and economic impacts are explained.

Hybrid Fuzzy Selecting-Control-by- Range Controllers of a Servopneumatic Fatigue System

The present paper proposes high performance nonlinear force controllers for a servopneumatic real-time fatigue test machine. A CompactRIO® controller was used, being fully programmed using LabVIEW language. Fuzzy logic control algorithms were evaluated to tune the integral and derivative components in the development of hybrid controllers, namely a FLC P and a hybrid FLC PID real-time-based controllers. Their behaviours were described by using state diagrams. The main contribution is to ensure a smooth transition between control states, avoiding discrete transitions in controller outputs. Steady-state errors lower than 1.5 N were reached, without retuning the controllers. Good results were also obtained for sinusoidal tracking tasks from 1/¤Ç to 8/¤Ç Hz.

Preparation a Study on the Use of the Resident Registration Number and Alternatives for RRN

The resident registration number was adopted for the purposes of enhanced services for resident convenience and effective performance of governmental administrative affairs. However, it has been used for identification purposes customarily and irrationally in line with the development and spread of the Internet. In response to the growing concern about the leakage of collected RRNs and possible abuses of stolen RRNs, e.g. identity theft, for crimes, the Korean Communications Commission began to take legal/regulatory actions in 2011 to minimize the online collection and use of resident registration numbers. As the use of the RRN was limited after the revision of the Act on Promotion of Information and Communications Network Utilization and Information Protection, etc., online business providers were required to have alternatives to the RRN for the purpose of identifying the user's identity and age, in compliance with the law, and settling disputes with customers. This paper presents means of verifying the personal identity by taking advantage of the commonly used infrastructure and simply replacing personal information entered and stored, without requiring users to enter their RRNs.

Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures

Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.

Improving the Flexibility of Employment in Polish Economic Practice

Modern organizations operate under the pressure of dynamic and often unpredictable changes, both in external and internal environment. Market success, in this context, requires a particular competence in the form of flexibility, interpreted here both on the level of individuals and on the level of organization. This paper addresses the changes taking place in the sphere of employment, as observed in economic entities operating on Polish market. Based on own empirical studies, the authors focus on the progressing trend of ‘flexibilization’ of employment, particularly in the context of transformations in organizational structure, designed to facilitate the transition into management by projects and differentiation of labor forms.

In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability

A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.

Analysis of Delay and Throughput in MANET for DSR Protocol

A wireless Ad-hoc network consists of wireless nodes communicating without the need for a centralized administration, in which all nodes potentially contribute to the routing process.In this paper, we report the simulation results of four different scenarios for wireless ad hoc networks having thirty nodes. The performances of proposed networks are evaluated in terms of number of hops per route, delay and throughput with the help of OPNET simulator. Channel speed 1 Mbps and simulation time 600 sim-seconds were taken for all scenarios. For the above analysis DSR routing protocols has been used. The throughput obtained from the above analysis (four scenario) are compared as shown in Figure 3. The average media access delay at node_20 for two routes and at node_20 for four different scenario are compared as shown in Figures 4 and 5. It is observed that the throughput will degrade when it will follow different hops for same source to destination (i.e. it has dropped from 1.55 Mbps to 1.43 Mbps which is around 9.7%, and then dropped to 0.48Mbps which is around 35%).

A Software for Calculation of Optimum Conditions for Cotton Bobbin Drying in a Hot-Air Bobbin Dryer

In this study, a software has been developed to predict the optimum conditions for drying of cotton based yarn bobbins in a hot air dryer. For this purpose, firstly, a suitable drying model has been specified using experimental drying behavior for different values of drying parameters. Drying parameters in the experiments were drying temperature, drying pressure, and volumetric flow rate of drying air. After obtaining a suitable drying model, additional curve fittings have been performed to obtain equations for drying time and energy consumption taking into account the effects of drying parameters. Then, a software has been developed using Visual Basic programming language to predict the optimum drying conditions for drying time and energy consumption.

Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter

In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.

Self Organizing Analysis Platform for Wear Particle

Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear particle analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear particle. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.

Building Relationship Network for Machine Analysis from Wear Debris Measurements

Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.

Bridging Quantitative and Qualitative of Glaucoma Detection

Glaucoma diagnosis involves extracting three features of the fundus image; optic cup, optic disc and vernacular. Present manual diagnosis is expensive, tedious and time consuming. A number of researches have been conducted to automate this process. However, the variability between the diagnostic capability of an automated system and ophthalmologist has yet to be established. This paper discusses the efficiency and variability between ophthalmologist opinion and digital technique; threshold. The efficiency and variability measures are based on image quality grading; poor, satisfactory or good. The images are separated into four channels; gray, red, green and blue. A scientific investigation was conducted on three ophthalmologists who graded the images based on the image quality. The images are threshold using multithresholding and graded as done by the ophthalmologist. A comparison of grade from the ophthalmologist and threshold is made. The results show there is a small variability between result of ophthalmologists and digital threshold.

Study on the Evaluation of the Chaotic Cipher System Using the Improved Volterra Filters and the RBFN Mapping

In this paper, we propose a chaotic cipher system consisting of Improved Volterra Filters and the mapping that is created from the actual voice by using Radial Basis Function Network. In order to achieve a practical system, the system supposes to use the digital communication line, such as the Internet, to maintain the parameter matching between the transmitter and receiver sides. Therefore, in order to withstand the attack from outside, it is necessary that complicate the internal state and improve the sensitivity coefficient. In this paper, we validate the robustness of proposed method from three perspectives of "Chaotic properties", "Randomness", "Coefficient sensitivity".