The Association of Vitamin B₁₂ with Body Weight-and Fat-Based Indices in Childhood Obesity

Vitamin deficiencies are common in obese individuals. Particularly, the status of vitamin B12 and its association with vitamin B9 (folate) and vitamin D is under investigation in recent time. Vitamin B12 is closely related to many vital processes in the body. In clinical studies, its involvement in fat metabolism draws attention from the obesity point of view. Obesity, in its advanced stages and in combination with metabolic syndrome (MetS) findings, may be a life-threatening health problem. Pediatric obesity is particularly important, because it may be a predictor of the severe chronic diseases during adulthood period of the child. Due to its role in fat metabolism, vitamin B12 deficiency may disrupt metabolic pathways of the lipid and energy metabolisms in the body. The association of low B12 levels with obesity degree may be an interesting topic to be investigated. Obesity indices may be helpful at this point. Weight- and fat-based indices are available. Of them, body mass index (BMI) is in the first group. Fat mass index (FMI), fat-free mass index (FFMI) and diagnostic obesity notation model assessment-II (D2I) index lie in the latter group. The aim of this study is to clarify possible associations between vitamin B12 status and obesity indices in pediatric population. The study comprises a total of 122 children. 32 children were included in the normal-body mass index (N-BMI) group. 46 and 44 children constitute groups with morbid obese children without MetS and with MetS, respectively. Informed consent forms and the approval of the institutional ethics committee were obtained. Tables prepared for obesity classification by World Health Organization were used. MetS criteria were defined. Anthropometric and blood pressure measurements were taken. BMI, FMI, FFMI, D2I were calculated. Routine laboratory tests were performed. Vitamin B9, B12, D concentrations were determined. Statistical evaluation of the study data was performed. Vitamin B9 and vitamin D levels were reduced in MetS group compared to children with N-BMI (p > 0.05). Significantly lower values were observed in vitamin B12 concentrations of MetS group (p < 0.01). Upon evaluation of blood pressure as well as triglyceride levels, there exist significant increases in morbid obese children. Significantly decreased concentrations of high-density lipoprotein cholesterol were observed. All of the obesity indices and insulin resistance index exhibit increasing tendency with the severity of obesity. Inverse correlations were calculated between vitamin D and insulin resistance index as well as vitamin B12 and D2I in morbid obese groups. In conclusion, a fat-based index, D2I, was the most prominent body index, which shows strong correlation with vitamin B12 concentrations in the late stage of obesity in children. A negative correlation between these two parameters was a confirmative finding related to the association between vitamin B12 and obesity degree. 

Spexin and Fetuin A in Morbid Obese Children

Spexin, expressed in the central nervous system, has attracted much interest in feeding behavior, obesity, diabetes, energy metabolism and cardiovascular functions. Fetuin A is known as the negative acute phase reactant synthesized in the liver. Eosinophils are early indicators of cardiometabolic complications. Patients with elevated platelet count, associated with hypercoagulable state in the body, are also more liable to cardiovascular diseases (CVDs). In this study, the aim is to examine the profiles of spexin and fetuin A concomitant with the course of variations detected in eosinophil as well as platelet counts in morbid obese children. 34 children with normal-body mass index (N-BMI) and 51 morbid obese (MO) children participated in the study. Written-informed consent forms were obtained prior to the study. Institutional ethics committee approved the study protocol. Age- and sex-adjusted BMI percentile tables prepared by World Health Organization were used to classify healthy and obese children. Mean age ± SEM of the children were 9.3 ± 0.6 years and 10.7 ± 0.5 years in N-BMI and MO groups, respectively. Anthropometric measurements of the children were taken. BMI values were calculated from weight and height values. Blood samples were obtained after an overnight fasting. Routine hematologic and biochemical tests were performed. Within this context, fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) concentrations were measured. Homeostatic model assessment for insulin resistance (HOMA-IR) values were calculated. Spexin and fetuin A levels were determined by enzyme-linked immunosorbent assay. Data were evaluated from the statistical point of view. Statistically significant differences were found between groups in terms of BMI, fat mass index, INS, HOMA-IR and HDL-C. In MO group, all parameters increased as HDL-C decreased. Elevated concentrations in MO group were detected in eosinophils (p < 0.05) and platelets (p > 0.05). Fetuin A levels decreased in MO group (p > 0.05). However, decrease was statistically significant in spexin levels for this group (p < 0.05). In conclusion, these results have suggested that increases in eosinophils and platelets exhibit behavior as cardiovascular risk factors. Decreased fetuin A behaved as a risk factor suitable to increased risk for cardiovascular problems associated with the severity of obesity. Along with increased eosinophils, increased platelets and decreased fetuin A, decreased spexin was the parameter, which reflects best its possible participation in the early development of CVD risk in MO children.