Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation

In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.

Coverage Probability of Confidence Intervals for the Normal Mean and Variance with Restricted Parameter Space

Recent articles have addressed the problem to construct the confidence intervals for the mean of a normal distribution where the parameter space is restricted, see for example Wang [Confidence intervals for the mean of a normal distribution with restricted parameter space. Journal of Statistical Computation and Simulation, Vol. 78, No. 9, 2008, 829–841.], we derived, in this paper, analytic expressions of the coverage probability and the expected length of confidence interval for the normal mean when the whole parameter space is bounded. We also construct the confidence interval for the normal variance with restricted parameter for the first time and its coverage probability and expected length are also mathematically derived. As a result, one can use these criteria to assess the confidence interval for the normal mean and variance when the parameter space is restricted without the back up from simulation experiments.

Covering-based Rough sets Based on the Refinement of Covering-element

Covering-based rough sets is an extension of rough sets and it is based on a covering instead of a partition of the universe. Therefore it is more powerful in describing some practical problems than rough sets. However, by extending the rough sets, covering-based rough sets can increase the roughness of each model in recognizing objects. How to obtain better approximations from the models of a covering-based rough sets is an important issue. In this paper, two concepts, determinate elements and indeterminate elements in a universe, are proposed and given precise definitions respectively. This research makes a reasonable refinement of the covering-element from a new viewpoint. And the refinement may generate better approximations of covering-based rough sets models. To prove the theory above, it is applied to eight major coveringbased rough sets models which are adapted from other literature. The result is, in all these models, the lower approximation increases effectively. Correspondingly, in all models, the upper approximation decreases with exceptions of two models in some special situations. Therefore, the roughness of recognizing objects is reduced. This research provides a new approach to the study and application of covering-based rough sets.

Note to the Global GMRES for Solving the Matrix Equation AXB = F

In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.

Real-time Interactive Ocean Wave Simulation using Multithread

This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic.

Dynamical Behaviors in a Discrete Predator-prey Model with a Prey Refuge

By incorporating a prey refuge, this paper proposes new discrete Leslie–Gower predator–prey systems with and without Allee effect. The existence of fixed points are established and the stability of fixed points are discussed by analyzing the modulus of characteristic roots.

Existence of Solution for Boundary Value Problems of Differential Equations with Delay

In this paper , by using fixed point theorem , upper and lower solution-s method and monotone iterative technique , we prove the existence of maximum and minimum solutions of differential equations with delay , which improved and generalize the result of related paper.

Almost Periodic Sequence Solutions of a Discrete Cooperation System with Feedback Controls

In this paper, we consider the almost periodic solutions of a discrete cooperation system with feedback controls. Assuming that the coefficients in the system are almost periodic sequences, we obtain the existence and uniqueness of the almost periodic solution which is uniformly asymptotically stable.

Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

Signature Identification Scheme Based on Iterated Function Systems

Since 1984 many schemes have been proposed for digital signature protocol, among them those that based on discrete log and factorizations. However a new identification scheme based on iterated function (IFS) systems are proposed and proved to be more efficient. In this study the proposed identification scheme is transformed into a digital signature scheme by using a one way hash function. It is a generalization of the GQ signature schemes. The attractor of the IFS is used to obtain public key from a private one, and in the encryption and decryption of a hash function. Our aim is to provide techniques and tools which may be useful towards developing cryptographic protocols. Comparisons between the proposed scheme and fractal digital signature scheme based on RSA setting, as well as, with the conventional Guillou-Quisquater signature, and RSA signature schemes is performed to prove that, the proposed scheme is efficient and with high performance.

Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay

This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.

Stability of a Special Class of Switched Positive Systems

This paper is concerned with the existence of a linear copositive Lyapunov function(LCLF) for a special class of switched positive linear systems(SPLSs) composed of continuousand discrete-time subsystems. Firstly, by using system matrices, we construct a special kind of matrices in appropriate manner. Secondly, our results reveal that the Hurwitz stability of these matrices is equivalent to the existence of a common LCLF for arbitrary finite sets composed of continuous- and discrete-time positive linear timeinvariant( LTI) systems. Finally, a simple example is provided to illustrate the implication of our results.

A New Objective Weight on Interval Type-2 Fuzzy Sets

The design of weight is one of the important parts in fuzzy decision making, as it would have a deep effect on the evaluation results. Entropy is one of the weight measure based on objective evaluation. Non--probabilistic-type entropy measures for fuzzy set and interval type-2 fuzzy sets (IT2FS) have been developed and applied to weight measure. Since the entropy for (IT2FS) for decision making yet to be explored, this paper proposes a new objective weight method by using entropy weight method for multiple attribute decision making (MADM). This paper utilizes the nature of IT2FS concept in the evaluation process to assess the attribute weight based on the credibility of data. An example was presented to demonstrate the feasibility of the new method in decision making. The entropy measure of interval type-2 fuzzy sets yield flexible judgment and could be applied in decision making environment.

An Optimal Control of Water Pollution in a Stream Using a Finite Difference Method

Water pollution assessment problems arise frequently in environmental science. In this research, a finite difference method for solving the one-dimensional steady convection-diffusion equation with variable coefficients is proposed; it is then used to optimize water treatment costs.

New PTH Moment Stable Criteria of Stochastic Neural Networks

In this paper, the issue of pth moment stability of a class of stochastic neural networks with mixed delays is investigated. By establishing two integro-differential inequalities, some new sufficient conditions ensuring pth moment exponential stability are obtained. Compared with some previous publications, our results generalize some earlier works reported in the literature, and remove some strict constraints of time delays and kernel functions. Two numerical examples are presented to illustrate the validity of the main results.

Periodic Solutions of Recurrent Neural Networks with Distributed Delays and Impulses on Time Scales

In this paper, by using the continuation theorem of coincidence degree theory, M-matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation functions gj, hj , these results are less restrictive than those given in the earlier references.

Analysis of Permanence and Extinction of Enterprise Cluster Based On Ecology Theory

This paper is concerned with the permanence and extinction problem of enterprises cluster constituted by m satellite enterprises and a dominant enterprise. We present the model involving impulsive effect based on ecology theory, which effectively describe the competition and cooperation of enterprises cluster in real economic environment. Applying comparison theorem of impulsive differential equation, we establish sufficient conditions which ultimately affect the fate of enterprises: permanence, extinction, and co-existence. Finally, we present numerical examples to explain the economical significance of mathematical results.

The Banzhaf-Owen Value for Fuzzy Games with a Coalition Structure

In this paper, a generalized form of the Banzhaf-Owen value for cooperative fuzzy games with a coalition structure is proposed. Its axiomatic system is given by extending crisp case. In order to better understand the Banzhaf-Owen value for fuzzy games with a coalition structure, we briefly introduce the Banzhaf-Owen values for two special kinds of fuzzy games with a coalition structure, and give their explicit forms.

Pontrjagin Duality and Codes over Finite Commutative Rings

We present linear codes over finite commutative rings which are not necessarily Frobenius. We treat the notion of syndrome decoding by using Pontrjagin duality. We also give a version of Delsarte-s theorem over rings relating trace codes and subring subcodes.