Investigation of Water Vapour Transport Properties of Gypsum Using Genetic Algorithm

Water vapour transport properties of gypsum block are studied in dependence on relative humidity using inverse analysis based on genetic algorithm. The computational inverse analysis is performed for the relative humidity profiles measured along the longitudinal axis of a rod sample. Within the performed transient experiment, the studied sample is exposed to two environments with different relative humidity, whereas the temperature is kept constant. For the basic gypsum characterisation and for the assessment of input material parameters necessary for computational application of genetic algorithm, the basic material properties of gypsum are measured as well as its thermal and water vapour storage parameters. On the basis of application of genetic algorithm, the relative humidity dependent water vapour diffusion coefficient and water vapour diffusion resistance factor are calculated.




References:
[1] J. Carmeliet, S. Roels, "Determination of the isothermal moisture
transport properties of porous building materials", J. Therm. Env. Build.
Sci., vol. 24, pp. 183-210, 2001.
[2] R. ČernÛ, P. Rovnaníková, Transport Processes in Concrete, 1st ed.
London: Spon Press, 2002.
[3] P. Häupl, H. Fechner, "Hygric material properties of porous building
materials", J. Build. Phys., vol. 26(3), pp. 259-284, 2003.
[4] C. E. Mossman, Literature survey of adsorption studies on porous
media. Report No. 126 of the division of building physics, Ottava: NRC,
1957.
[5] H. Derluyn, H. Janssen, J. Diepens, D. Derome, J. Carmeliet,
"Hygroscopic behavior of Paper and Books", J. Build. Phys., vol. 31,
pp. 9-34, 2007.
[6] B. Johannesson, M. Janz, "Test of four different experimental methods
to determine sorption isotherms", J. Mat. Civ. Eng., vol. 14(6), pp. 471-
477, 2002.
[7] M. Jiři─ìkov├í, Application of TDR Microprobes, Minitensiometry and
Minihygrometry to the Determination of Moisture Transport and
Moisture Storage Parameters of Building Materials, CTU Report, vol. 8,
no. 2, 2004.
[8] S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. ČernÛ, Z.
Pavlík, Ch. Hall, K. Kumaran, L. Pel, R. Plagge, "Interlaboratory
Comparison of Hygric Properties of Porous Building Materials", J.
Therm. Env. Build. Sci., vol. 27(4), pp. 307-325, 2004.
[9] R. ČernÛ (ed.), Complex System of Methods for Directed Design and
Assessment of Functional Properties of Building Materials: Assessment
and Synthesis of Analytical Data and Construction of the System,
Prague: CTU Press, 2010.
[10] J. Ko─ì├¡, J. Žum├ír, Z. Pavl├¡k, R. ─îern├¢, "Application of Genetic
Algorithm for Determination of Water Vapor Diffusion Parameters of
Building Materials", J. Build. Phys., vol. 35(3), pp. 238-250, 2012.
[11] J. Ko─ì├¡, J. Mad─øra, J. Žum├ír, Z. Pavl├¡k, R. ─îern├¢, "Inverse Analysis of
Water Vapour Transport in Building Materials Using Genetic
Algorithm", Proceedings of 9th Nordic Symposium on Building
Physics, Tampere: Tampere University of Technology, pp. 665-672,
2011.
[12] M. Pavlíková, Z. Pavlík, M. Keppert, R. ČernÛ, "Salt transport and
storage parameters of renovation plasters and their possible effects on
restored buildings' walls," Const. Build. Mat., vol. 25(3), pp. 1205-1212,
2011.
[13] V. Nagy, L. M. Vas, "Pore characteristics determination with mercury
porosimetry in polyester stample yarns," Fibres Text. East. Eur., vol.
13, pp. 21-26, 2005.
[14] M. Jiři─ìkov├í, Z. Pavl├¡k, L. Fiala, R. ─îern├¢, "Thermal properties of
mineral wool materials partially saturated by water", Int. J.
Thermophys, vol. 27, pp. 1214-1227, 2006.
[15] Z. Pavl├¡k, J. Žum├ír, I. Medve─Å, R. ─îern├¢, "Water vapor adsorption in
porous building materials: experimental measurement and theoretical
analysis", Transport Porous Med., vol. 91(3), pp. 939-954, 2012.
[16] J. Ko─ì├¡, J. Mad─øra, M. Jerman, R. ─îern├¢, "Determination of moisture
diffusivity of AAC in drying phase using genetic algorithm", World
Academy of Science, Engineering and Technology, vol. 61, pp. 863-868,
2012.
[17] H. M. K├╝nzel H. M., Simultaneous Heat and Moisture Transport in
Building Components, PhD Thesis, Stuttgart: Fraunhofer IRB Verlag,
1995.
[18] R. Schirmer, Die Diffusionszahl von Wasserdampf-Luft-Gemischen und
die Verdampfungsgeschwindigkeit, Beiheft VDI-Zeitschrift,
Verfahrenstechnik 6, pp. 170-177, 1938.