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Abstract—Water vapour transport properties of gypsum block 

are studied in dependence on relative humidity using inverse analysis 
based on genetic algorithm. The computational inverse analysis is 
performed for the relative humidity profiles measured along the 
longitudinal axis of a rod sample. Within the performed transient 
experiment, the studied sample is exposed to two environments with 
different relative humidity, whereas the temperature is kept constant. 
For the basic gypsum characterisation and for the assessment of input 
material parameters necessary for computational application of 
genetic algorithm, the basic material properties of gypsum are 
measured as well as its thermal and water vapour storage parameters.  
On the basis of application of genetic algorithm, the relative 
humidity dependent water vapour diffusion coefficient and water 
vapour diffusion resistance factor are calculated.  
 

Keywords—Water vapour transport, gypsum block, transient 
experiment, genetic algorithm. 

I. INTRODUCTION 
ROPERTIES characterising the water vapour transport and 
storage in porous building materials represent necessary 

information for optimal design and construction of buildings. 
Knowledge of these material parameters is significant 
especially for materials of building envelope, nominally for 
thermal insulations, walling blocks, air tight layers, plasters, 
etc.  

In the hygroscopic range, where the transport of water 
vapour is dominant mode of moisture transfer, the moisture 
storage parameters are called sorption and/or desorption 
isotherms [1]-[3]. They express the dependence of the 
moisture content in a material on the ambient relative 
humidity.  
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One must take into account also fact that adsorption of 
water vapour is an exothermic process hence the amount of 
vapour adsorbed at equilibrium must decrease with increasing 
temperature [4], [5]. In materials research are these storage 
parameters measured in almost the same form for many 
decades using dessicator method that is sometimes called 
climate box method [6]. Since this method can take a 
relatively long time, new sophisticated methods were 
developed for sorption isotherms measurement. Here, 
especially gravimetric sorption microbalance method also 
called dynamic vapor sorption method is the most often 
applied technique [6]. This method allows determination of 
adsorption as well as desorption isotherms within short time 
(typically one or two days depending on materials of inner 
structure) and in dependence on temperature.  

Compared to water vapour storage functions measurement 
that is presently well established in materials research, 
assessment of material parameters characterising the water 
vapour transport remains still an open question. For the 
measurement of water vapour transport properties, the steady 
state cup method in different experimental arrangements is the 
most often used technique. This method is the most popular 
for its simplicity and is generally considered as reliable and 
relatively accurate [7].  

As the intensive research on water transmission proved, the 
water vapour diffusion properties depend on relative humidity 
in material. Therefore, the existing standards based on cup 
method require measurement in several pairs of relative 
humidity [8], [9]. However, from these measurements only 
step-wise relationship between diffusion parameters and 
relative humidity is accessed within highly time-consuming 
experiments. 

On this account we referred in [10], [11] about new 
combined computational-experimental approach for the 
determination of water vapour diffusion properties of porous 
building materials in dependence on relative humidity. This 
methodology is based on measurement of relative humidity 
profiles and their inverse analysis using computational 
modelling involving genetic algorithms. Since the first 
achieved results are very promising, we present in this paper 
further application of this method for the assessment of water 
vapour transport properties of gypsum block.  

II. EXPERIMENTAL 

A. Studied Material 
The studied gypsum block is product of Czech company 

GYPSTREND Ltd. The block is based on grey gypsum that is 
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modified by plasticizer, hydrophobic admixture, and 
expanded perlite. Plasticizer Polyfor is product of Forchem 
Ltd., Czech Republic. It is liquid substance that is originally 
used for lime-cement mortars as plasticizer and air-entraining 
agent having stabilisation effect. Hydrophobic admixture MH 
1107 was manufactured by Dow Corning-Construction 
Chemical. It is unique product on the basis of 
polymethylhydrogen siloxane designed for hydrophobic 
treatment of gypsum plaster boards. Expanded perlite EP 150 
is product of Pertlit, Ltd., Czech Republic. It has bulk density 
150 kg/m3, granularity 0 – 1 mm and thermal conductivity 
0.042 W/m K.  Composition of researched gypsum block is 
given in Table I.  

 

 
B. Material Properties of Gypsum Block 
 Computational application of genetic algorithm requires 

data on material parameters of investigated material. On that 
account, measurement of matrix density, bulk density, total 
open porosity, pore size distribution, thermal properties, 
sorption and desorption isotherms were done.  

Matrix density was measured by helium pycnometry using 
apparatus Pycnomatic ATC (Thermo). Bulk density was 
accessed using gravimetric method by weighing the sample 
mass and measurement its linear dimensions. From the known 
values of matrix density and bulk density, the total open 
porosity was measured. The basic material properties are 
summarised in Table II. The accessed porosity is very high 
what brings to the studied gypsum block good thermal 
insulation properties.  

 

 
The porosity measurements were performed on dried 

samples using apparatuses Pascal 140 and 440 (Thermo) 
working on mercury intrusion principle [12]. The physical 
basis of this measurement results from the assumption that the 
non-reactive and non-wetting liquid (in our case mercury) will 
not penetrate pores until sufficient pressure is applied to force 
its entrance. As narrow pores must be filled up, such high 
pressure must be applied [13]. The results of pore size 
distribution measurement are given in Figs. 1, 2. We can see 
very uniform behaviour of gypsum having the highest pore 
volume in the range of 1.0 – 7.0 μm.  

Among the thermal properties, thermal conductivity, 
specific heat capacity and thermal diffusivity were measured 

for the dried material samples. For that purpose we used 
commercial device ISOMET 2104 (Applied Precision, Ltd.). 
ISOMET 2104 is a multifunctional instrument for measuring 
thermo-physical parameters which is based on the application 
of an impulse technique and is equipped with various types of 
optional probes [14]. In our measurement we used contact 
surface probe, whereas the samples size was 70/70/100 mm. 
Thermal parameters are given in Table III. 

 

 
 

Fig. 1 Pore size distribution – cumulative curve 
 

 
 

Fig. 2 Pore size distribution – distribution curve 
 

 

 
 

TABLE III 
THERMAL PARAMETERS OF TESTED GYPSUM  
Thermal 

conductivity 
(W/m K) 

Specific heat 
capacity 
(J/kg K) 

Thermal 
diffusivity 

(m2/s) 
0.21 2 740 1.49E-07 

TABLE II 
BASIC MATERIAL PROPERTIES OF TESTED GYPSUM  

Bulk density 
(kg/m3) 

Matrix density 
(kg/m3) 

Total open 
porosity 

(-) 
516 2183 0.76 

    

TABLE I 
COMPOSITION OF TESTED GYPSUM BLOCK 

      Mass % of gypsum  
Water/gypsum 

ratio Polyfor MH 
1107 

Perlite 
EP 150  

0.96 1.0 0.5 10.0  
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accessed within the application of GRADE algorithm are 
given in Fig. 8.  We can see relatively good agreement 
between measured and calculated data what basically 
validates the calculated water vapour transport properties of 
studied gypsum block.  

 

 
 

Fig. 8 Comparison of measured and calculated relative humidity 
profiles 

 
Water vapour transport properties of researched gypsum are 

given in Figs. 9, 10. One can observe their high dependence 
on relative humidity what is very significant finding from the 
point of view of the practical use of the studied material.  

 

 
 

Fig. 9 Water vapour diffusion resistance factor of gypsum block 
 

 
 

Fig. 10 Water vapour diffusion coefficient of gypsum block 

V.    CONCLUSION 
In this paper, a combined experimental/computational 

technique was used for the assessment of water vapour 
transport properties of gypsum block. The water vapour 
parameters were determined as functions of relative humidity, 
what represents valuable information for the application of the 
researched gypsum block in building practice. The measured 
adsorption and desorption isotherms revealed very low 
sorption capacity of studied material, what is beneficial for its 
use.  The presented transient experiment and its computational 
evaluation can be considered as a further step to wider 
utilization of the developed technique in materials research.  
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