Influence of Fiber Packing on Transverse Plastic Properties of Metal Matrix Composites

The present paper concerns with the influence of fiber packing on the transverse plastic properties of metal matrix composites. A micromechanical modeling procedure is used to predict the effective mechanical properties of composite materials at large tensile and compressive deformations. Microstructure is represented by a repeating unit cell (RUC). Two fiber arrays are considered including ideal square fiber packing and random fiber packing defined by random sequential algorithm. The micromechanical modeling procedure is implemented for graphite/aluminum metal matrix composite in which the reinforcement behaves as elastic, isotropic solids and the matrix is modeled as an isotropic elastic-plastic solid following the von Mises criterion with isotropic hardening and the Ramberg-Osgood relationship between equivalent true stress and logarithmic strain. The deformation is increased to a considerable value to evaluate both elastic and plastic behaviors of metal matrix composites. The yields strength and true elastic-plastic stress are determined for graphite/aluminum composites.




References:
[1] D. Adams, "Inelastic analysis of a unidirectional composite subjected to
transverse normal loading", J. Compos. Mater., Vol. 4, pp. 310-328,
1970.
[2] C. T. Sun, and J. L. Chen, "A Micromechanical model for plastic
behavior of fibrous composites", Comp. Sci, Tech., Vol. 40, pp. 115-129,
1991.
[3] A. A. Gusev, P. J. Hine, I. M. Ward, "Fiber packing and elastic
properties of a transversely random unidirectional glass/epoxy
composite", Comp. Sci, Tech., Vol. 60, No. 4,, pp. 535-541, 2000.
[4] R.J.M. Smit, W.A.M. Brekelmans, H.E.H.Meijer, "Prediction of the
mechanical behavior of nonlinear heterogeneous system by multi-level
finite element modeling", Comput. Methods Appl. Mech. Eng. 155, 181-
192 (1998).
[5] C.E. Schwier, A.S. Argon, R.R. Cohen, Polymer, Vol. 26, pp. 1985-
1993, 1985.
[6] K. Dijkstra and Gaymans, J. Mater. Sci., Vol. 29, pp. 3231-3238, 1994.
[7] C. Cheng, A. Hilter, E. Baer, P.R. Soskey, S.G. Mylonakis,
"Deformation of rubber-toughened polycarbonate: Microscale and
nanoscale analysis of the damage zone", J. Appl. Polym. Sci., Vol. 55,
pp. 1691-1702, 1995.
[8] VA. Buryachenko, Micromechanics of heterogeneous materials,
Springer, New York, 2007.
[9] S. Kari, H. Berger, R. Rodriguez-Ramos, U. Gabbert, "Numerical
evaluation of effective material properties of transversely randomly
distributed unidirectional piezoelectric fiber composites", J. Intel. Mater.
Sys. Struct., Vol. 18, pp. 361-372, 2007.
[10] A. Naik, N. Abolfathi, G. Karami and M. Ziejewski, " Micromechanical
viscoelastic characterization of fibrous composites", J. Compos. Mater.,
Vol. 42, pp. 1179-1204, 2008.
[11] J.S. Wang, Physics A, Vol. 254, pp.179-184, 1998.
[12] O. Pierard, C. González, J. Segurado, J. LLorca, I. Doghri,
"Micromechanics of elasto-plastic materials reinforced with ellipsoidal
inclusions", Int. J. Solids Struct., Vol. 44, pp. 6945-6962, 2007.
[13] M. T. Abadi, "Micromechanical Modeling of Heterogeneous Materials
at Finite Strain" submitted to Comp. Encyclopedia, 2011.
[14] M. T. Abadi, "Characterization of heterogeneous materials under shear
loading at finite strain", Comp. Struct., Vol. 92, No. 2, pp.578-584,
2010.