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Abstract—The present paper concerns with the influencebeffi
packing on the transverse plastic properties of amehatrix
composites. A micromechanical modeling procedweused to
predict the effective mechanical properties of cosiie materials at
large tensile and compressive deformations. Micucsire is
represented by a repeating unit cell (RUC). Tweefilarrays are
considered including ideal square fiber packing aaddom fiber

packing defined by random sequential algorithm.
micromechanical modeling procedure is implementedr f
graphite/aluminum metal matrix composite in whicthet

reinforcement behaves as elastic, isotropic saliud the matrix is
modeled as an isotropic elastic-plastic solid felltg the von Mises
criterion with isotropic hardening and the Ramb@sgood

relationship between equivalent true stress andrithgnic strain.
The deformation is increased to a considerableevadievaluate both
elastic and plastic behaviors of metal matrix cosies. The yields
strength and true elastic-plastic stress are detedn for

graphite/aluminum composites.
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|. INTRODUCTION

assumed to simplify the micromechanical model. iAbito
predict composite properties from those of the tients is
always an attractive idea. However, the micromeidahn
approach is often hindered by simplifying assunian
geometrical representation of microstructures. Erpental
observations have shown that the fiber stringsdastibuted
in the random pattern. Hence, a model is requioednialysis

Théhe large deformation of three-dimensional RUC wihdom

fiber packing to determine the effective properti#smetal
matrix composites.

The present research works determines the influaice
fiber packing on the plastic properties of metal thra
composites. The micromechanical modeling procedisre
implemented to evaluate the response of unidineatio
continuous fiber composites subjected to finite abxi
deformation. The microstructure of the metal mainaterials
is represented by a RUC. Two fiber arrangements
considered including ideal square fiber packing amtdom

are

'fiber packing defined by random sequential algonittRUC

subjected to tensile and compressive uniaxial dedition to
determine the effective properties of metal matdnposite
considering the periodicity conditions on the defation of

ETAL matrix composites have found many applicrﬂnon]’g&‘IC boundary surfaces. The Volume averaging schisme

as constructional and functional materials in dédfe
industries. The presence of reinforcement in metatrix
materials improves the properties such as theleessiength,
creep resistance, fatigue strength, thermal sheskstance,
and corrosion resistance. To design a metal matimposite
for desired working conditions, a model is requitedrelate
the macroscopic response of such heterogeneousiaimte
the arrangement of the reinforcements in the miarogire
and the properties of constituents and interactietween
them. The micromechanical model provides an efiicie
procedure to determine properties of composite radse
Initially, Adams [1] studied the transverse meckahi
behavior of a unidirectional continuous fiber-reirded
composite with fibers of circular cross section djopting
finite element cell models under plane strain cbonds. A
simple geometrical cell composed of matrix and usidn
material is repeated by appropriate boundary cuomditto
represent a composite with a periodic microstrectiood
agreement was achieved between calculated andirgueal
stress-strain curves for a rectangular fiber amamgnt. Sun
and Chen [2] developed a simple micromechanical ehtal
describe the elastic-plastic behavior of fibrousnposites. A
square cross section for fibers and plane stramlions are
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implemented to apply the local macroscopic defoionat
gradient tensor to the RUC assigned to the miarosire. The
micromechanical modeling procedure is implemented f
graphite/aluminum metal matrix composite in whidhe t
reinforcement behaves as elastic, isotropic soldsd the
matrix was modeled as an isotropic elastic-plastatid
following the von Mises criterion with isotropic teening and
the Ramberg-Osgood relationship is assumed between
equivalent true stress and logarithmic strain. RE/€ubjected
to uniaxial large deformation increased to a carsitlle value
to evaluate both elastic and plastic behaviors efainmatrix
composites. The yields strength and true elas#stjg stress
are determined for graphite/aluminum composites.

Il. MICROSTRUCTURE

The microstructures of unidirectional fiber reirded
composites are commonly described by three fiber
arrangement including square, hexahedral and rarfilzen
packing patterns. The micromechanical results foear
anisotropic elastic materials revealed that theutated axial
and shear elastic modulus are dependent on thegddmking
[3]. Since the microstructures with square and hegeal
fiber-packing patterns are idealized geometricpfesentation
for fiber arrangement, the microstructure with ramdfiber
packing vyields more accurate results. At large tgas
deformation of anisotropic materials, the resultghly
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the deformation locking may be observed at lowesirst Zm 1)
Since the heterogeneities are orders of magnitousler K

than the total body, the deformation field in theinity of one  \yherek = 400 MPa is the strength coefficient amét 0.1 is
inclusion is approximately the same as the defaondield o atrix strain hardening exponent [12]. Regaydinese
near neighboring inclusions [4]. Experimental obatons [5- data, an initial yield stress of 225.3 MPa is abtai The

7] have shown that deformation field in the vignf & g \yminum material is reinforced with 0.4 fiber vola
subvolume is approximately the same as deformdiedd of ¢ o

the near neighboring subvolumes. The size of suiwelis

small enough compared to the total microstructize so that
the effective properties computed from the subvauare

independent of its size and position within the neétructure.

Therefore, the microstructure is represented bgraogic unit

cell that deforms in a repetitive way. The periodiodeling

can be quite useful, because it provides rigoraisnations

with a priori prescribed accuracy for various miater
properties [8-10].

Microstructure shown in Fig. 1 is considered fore th
unidirectional continuous fiber composites. Thewliar fibers
with identical radius are dispersed in the micnostre in a
random and isotropic manner. It is assumed thatoneposite
material has a periodic microstructure which carobeined
by translating RUC along three orthogonal axes. Tiber
distribution in the unit cell is generated using trandom
sequential adsorption algorithm [11] which enswaeandom,
isotropic and homogeneous distribution for the rbeithin
the RUC. The random coordinates in the cross-seatid
microstructure are generated for the center ofutarcfibers
with specific diameter, denoted loy When a fiber intersects
the boundaries of unit cell, another fiber is gatest on the
neighboring unit cell in order to obtain periodiaitucell. The
new fiber is added to the microstructure when tistadce
between the centers of a given fiber and the doflesrs
previously generated is greater than a minimumesl(l. ).
Such condition prevents overlapping fibers as aglensuring
adequate mesh geometry for the matrix material téaca
between fibers. To prevent element distortion dyrimesh
generation, the fiber surface should not be toseclgreater
than 0.4) to the boundary surfaces of the RUC. When such
conditions are satisfied, the fiber is added touhi cell at the
generated random coordinates. The procedure istiegpentil
the fiber volume fraction reaches close to a pffiadd value.
The square cross section is considered for unit(bgk by)
and the ratio of fiber diameter to unit cell dimiems(d / 2b,)
is set to 0.05.

Aluminum alloy reinforced with stiff graphite fiberis
considered. The fibers behaved as elastic, isatrgpiids
characterized by the elastic modulds= 250 GPa and the
Poisson's ratie; = 0.2. The matrix is modeled as an isotropic
elastic-plastic solid following the von Mises crit;m with
isotropic hardening. The matrix elastic constamesEg, = 70  Fig. 1 Microstructure considered for metal matmposites having

depends on the fiber packing and for some fibeargyement, o ¥n

GPa and,, = 0.33, and the Ramberg-Osgood relationship is random fiber packing pattern
assumed between equivalent true stngﬁg, and logarithmic Ill.  MICROMECHANICAL MODEL
strain,ep, i.e., Micromechanical model provides efficient tool to

characterize composite materials from known progerof
their constituents and the distribution of the f@ioement in
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the microstructure through the analysis of a RUk €ssence power in RUC assigned at the corresponding poirgt given
in micromechanical approach is that the heterogemeodeformed configuration. It was shown [13] that threergy
structure of the composite is replaced by a homeges balance results in

medium with anisotropic properties. 3 3 3.3 1 .
A Lagrangian viewpoint is used to describe the nite ZZ F.B = Z - Fi thds (4)
motion and the components of vectors and tensoes ai=l i=l ERERS s

described in a fixed rectangular coordinate systemthe Where the dot superscript denotes to the time afiviw, P;
reference configuration of RUC, the position of ypital are the components of nominal stress tensor defined
material particle is expressed with veciorcomponentss). macroscopic levels; are the components of traction force and
In the deformed configuration at instartc¢éhe particle moves s is the deformed geometry of boundary surfée
to a position described with vectotx, (componentsx;)
corresponding to the displacement veatigr; (components o o )
u). The deformation is typically described using the The finite element_analy5|s is used to (_jetermlne th
deformation gradient tensor, designated 1By whose eSPonse of RUC subjected to large deformationsceSthe
components are given by; penoglmny constraint enforces that the oppositees deform

ax. 1 identically, the geometry of RUC is meshed so the
F =67| @ number and distribution of nodes on opposite faaes

I ) identical. The RUC is meshed by eight-node linedckb

The reference geometry of RUC is assumed to beefsments using sweep technigue along 1-axis.

rectangular prismatic volume whose surfaces arallphito The initial and maximum allowable increment sizes set

the surfaces defined in a fixed Cartesian coordirgfstem 5 0,001 and 0.025 of total increment size respelgt The
with origin located at the centre of RUC. As shawrFig. 1, jncrement size is automatically modified based dre t
the initial dimension of RUC isi2x2b, X 2bs. The boundary ¢onyergence rate. The small value for initial imeet size
surfaces of reference geometry perpendiculai-adis are cayses that several initial increments concern veldhstic
designated witl§" andS™ intersecting-axis atX;= +b andX;  pehavior and prevent the abrupt transition fromstato

= -b;, respectively. The displacement of the pointsted@n p|astic behaviors. Therefore, the yield strengtreatculated
each boundary surface is measured respect to cpmiets \yiih reasonable accuracy.

labeled as point®,, P, P, andPs in Fig. 1. Such points are  The numerical procedure is used to determine tfetafe
called reference points. The current position ah{mlocated macroscopic mechanical response of metal matrixpcsite

on surfaces is measured respect to poly, while the points jn  transverse tensile and compressive  deformation
located on§", S andS;” are measured respect to poiRts  mechanisms.  Two fiber arrangements are considered

P, andPs, respectively. To enforce the periodicity consttai j,cjyding ideal square fiber packing and randorefipacking.
the current position of boundary surface is desctiby [13]:
X _ (o% = x —x® :{123} (2a) A.Tension normal to fiber direction
(-0xz xat) ™ X (o2 Xa) X0 ’ The RUC is subjected to a specific axial tensilfoxdeation
Xi(X,-by Xart) )48 = Xi(x, 0, %01) xi((zg i :{1,2,3} (2b) along 2-axis normal to the fiber direction, whiketRUC is
(0 @ free to deform along two other axes. The displacgnod
Xi(x,, X, -by t) )ﬂd = Xi(x,, Xpbt) ~ K() ! ={1.2,3} (2c)  reference points is described by Eq. (3), in whtehvalue of

Where)g((j[%is the components of current position vector OE

IV. PLASTIC BEHAVIOR OFMMC

t

(t

22 IS increased from a unit value to a specific vahvaile

12, F13, F21, Fos, F3; are F3p are set to zero to prevent shear
deformation. The values ofF;; and Fs; are calculated in

thenicromechanical modeling. Fig. 2 depicts the defmim
geometry of RUC subjected td,, = 1.3. Since the

microstructure is extruded uniformly along fiberetition and

corner pointP,.

To relate the macrostructure deformation to
microstructure deformation, it is assumed that theal
macroscopic deformation gradient tensor at a gp@nt to be

equal the volume averaged deformation gradientotens$
RUC assigned at that point. Using the periodic@gstraining
equations (1), it can be shown [13] that the mawpE
deformation gradient tensor is a function of cutigwsition of
corner point$,, Py, P, andP; as follows:
- X =X _ g -y

", 2b,

It should be noted that no summation is considened
superscript in Eq. (3).

An energy balance is considered to relate stresoten the
macroscopic and microscopic scales. The internalepaat
macroscopic level at a given point is set equah&internal

+9, ®)

there is no gradient on geometry, material properiand
loading conditions, single raw of elements is cdastd along
1l-axis. As shown in Fig. 2a, the boundary surfaaeRUC
with square fiber packing pattern remain flat antti@gonal at
the deformed status. It was verified [14] that theial
deformation causes no distortion on the boundariases of
RUCs having three orthogonal reflectional symmeplienes
and the initial flat surfaces remain flat withoutyaotations.
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(b)
Fig. 2 Initial and deformed geometries subjectettisile axial
deformation normal to fiber direction in the RUS of
graphite/aluminum composite having 0.4 fiber volunaetion and
microstructures with a) square fiber packing b)dam fiber packing

Fig. 2b shows the deformed geometries for RUC with
random fiber packing meshed. There is considerable
displacement in the center of fibers, while negligi
deformation is observed in fibers because of thHegh
stiffness compared to matrix material. The inidaundary flat
surfaces normal to the 2 and 3 axes are dispantéldei RUC
because of non-uniform fiber distribution on thess section.

It should be noted that the plane normal to 1-aeisains flat
in both RUCs due to reflectional symmetric plane.

Fig. 3 illustrates the equivalent stress in mainaterial
subjected to transverse stretch ratio 1.3 in gtefdiuminum
composite. As shown in Fig. 3a, The von Mises streaches
to maximum value at the mid-distant between fibarghe
symmetric planes normal to fiber direction as wadl the
surface in the fiber/matrix interaction. Fig. 3toals that more
volume of matrix materials reaches to maximum stres
between fibers compared to fiber/matrix interface i
microstructure with random fiber packing patterrs depicts
in Fig 3, the more equivalent stress is observedthia
microstructure with random fiber packing due to aloc
severely deformation.

The nominal stres$,, is calculated using the resultant
forces applied to boundary surfaces and the stredtio,
namely,

1 1F 1F
— [tds+——2 [tds+——= [ tds (5)
S s S, Fus S Rus

Based on deformation gradient and nominal stressote
the Cauchy stress applied along tension directien i
determined as,

Py =

Py
F11F33
Fig. 4 depicts the variation of calculated Cauctrigsscy,
as the deformation proceeds for aluminum materiadl a

graphite/aluminum composites with random and sqfibes-
packing patterns. To verify numerical procedure duser
micromechanical analysis, the properties of fibaterial are
set the same as matrix material in the microstrectith
random fiber packing pattern and the calculatecctiffe
properties are compared to net aluminum materia¢ Yield
strength and stress in elastic and plastic regionelate well
with the properties of aluminum materials. The
micromechanical model evaluates the same yielahgthefor
composite for both microstructures. The yield sgtanof
metal matrix composite with 0.4 fiber volume fracti has
little increase respect to net aluminum materia¢g,ause some
regions of matrix material experience plastic defation at
low level deformation due to local plastic deforioat Since
the matrix material has more freedom to flow betwébers
in random fiber packing, less stress is requiredpply plastic
deformation compared to microstructure with squiber
packing.

Oy =J7'FP, = )
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Fig. 3 Von Mises stress in matrix material subjédtetransverse
stretch ratio 1.3 in graphite/aluminum compositeitng 0.4 fiber
volume fraction and microstructure with a) squalberfpacking b)

032 (MPa)

random fiber packing

B.Compression normal to fiber direction

The micromechanical modeling procedure is used to
determine the elastic-plastic transverse propeniesnetal
matrix composites in the compressive loading cooniit The
RUC is subjected to a specific compressive axi&brteation
along 2-axis normal to the fiber direction, whitetRUC is
free to deform along two other axes. The displacenoé
reference points is described by Eq. (3), in whieh value of
F»5 is reduced from unit value up to 0.75, wHig, Fi3, Foy,
Fa3, F31 are Fsp are set to zero to prevent shear deformation.
The values of;; andF;; are calculated in micromechanical
modeling procedure.

Fig. 5 depicts the deformed geometry of RUC subjb¢o
compressive deformation. Similar to tensile defation, the
boundary surfaces of RUC with square fiber packiagern
remain flat, as shown in Fig. 5a. The compressibiRUC
along 2-axis makes a considerable increase in Ribférgion
along 3-axis normal to fiber direction, while thésenegligible
dimension change of RUC along fiber direction. Thigh
stiffness fibers make more severely deformationmiatrix
material wherf,; is reduces more than 0.75 and there is high
distortion in the elements considered for matrixterial.
Therefore, the analysis stops whEg, reaches to 0.75. As
shown in Fig. 5b, the microstructure with randonbefi
packing has more flexibility because the fiber rgs can
move between each other aRg is reduced to 0.7. Since the
fibers are distributed randomly and there is no regtnic
plane, the boundary surfaces normal to fiber divactre
distorted from initial flat surfaces.

Fig. 6 illustrates the variation of compressive €austress
as the deformation applies to aluminum material and
graphite/aluminum composites with random and sqfibes-
packing patterns. There is considerable increassield
strength in metal matrix composites with 0.4 fihelume
fraction compared to net matrix material. Both ragtructures
have the same vyield strength. Similar to tensilrmeation,
the microstructure with random fiber packing regaitower
stress to apply plastic deformation compared taastcucture
with square fiber packing, because fibers in randmatiern
can move between each other and lower stress en@usin
matrix material located between fibers. As showrFig. 6,
there is considerable stress rise in microstrustwigh square
fiber packing as the compressive plastic deformasipplies,

The logarithmic strain is used to describe the darg
deformation in plastic deformation and It is definas the
logarithm of the ratio of current length to initl@hgth. Fig. 7
shows the graph of true (Catchy) stress-logarithsiriain for
net matrix material and graphite/aluminum compasitéth
microstructures having fiber arrangement in squarel

\ \ | \ because of fiber distant decrease.
Vf=0.'4, RUC with 'Square fiberlpacking ' /
L
\ ___/
N ___/

N

\

T
\ . ]

vi=0 Vf=0.4, RUC with Random fiber packing

1

1.05 1.1 1.15 1.2

F22

1.25 1.3

Fig. 4 Cauchy stress required to applied elaststpl tensile
transverse deformation to net matrix material anmdmgosites with

different microstructures

random packing patterns. The microstructure witluase
fiber-packing patterns has similar plastic progartin tension
and compression, while the microstructures withdecen
fiber-packing patterns require more plastic stress
compressive plastic deformation than tensile ptasti
deformation. Table 1 lists the true stress valweguired to
apply the same plastic strain in tension and cossgioe. The
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difference of true stress is a
microstructures having random fiber-packing pagern

Fig. 5 Initial and deformed geometries subjectedaimpressive axial
deformation normal to fiber direction in the RUC of
graphite/aluminum composite having 0.4 fiber volunaetion and
microstructure with a) square fiber packing b) @mdiber packing

reasonable value f¢ 1000 \ T \ I T \

0
[ \ I

100 [—yf=0.4, RUC with Random fiber packing T vi=0

-200 I N

o | N
F 400 f —
2 500 i) —
é:: 600 ] /(

700 7

800 VF=0.4, RUC with S fib ki

=0.4, quare fiber packing
900 / |
1000 | | |
0.7 0.75 08 0.85 09 0.95 1

FZZ

Fig. 6 Cauchy stress required to applied elaststjt compressive
deformation to net matrix material and compositéh different
microstructures

800 Vf=0.4, RUC with Square fiber packing

600 ==
400
200
0 \
-200 V=0
-400
-600
-800
-1000
02 02 015 01 005 O 005 01 015 02 025

32 (MPay

Vf=0.4, RUC with Random fiber packing

522
Fig. 7 True stress — logarithmic plastic strainpgréor aluminum
material and graphite/aluminum composite havingid€r volume
fraction and different microstructures

TABLE |
TRUE STRESSV ALUES REQUIRED TO APPLY THE SAME PLASTIC STRAIN TO THE
MICROSTRUCTURESNITH FIBER ARRANGEMENT IN SQUARE AND RANDOM
PACKING PATTERNS

True stress

’ . Logarithmic True stress -
Fiber packing : : difference
plastic strain (MPa) (MPa)
-0.1 -463.48
Random +0.1 +453.36 +10.12
-0.1 -488.3"
Square +0.1 +488.74 037

V. CONCLUSIONS

The micromechanical technique provides an efficieat to
characterize transverse plastic properties of matatrix
composites at tensile and compressive large defmnsa The
present procedure is useful to develop or verifg fmite
strain constitutive laws for metal matrix compositeased on
the distribution of the reinforcement in the midrasture and
the properties of constituents and interaction betwthem.
The composite microstructure is described by RU@ wivo
fiber distributions including ideal square and ramdfiber-
packing patterns. Both microstructures predictsame yield
strength for composite materials. However, as thastie
strain applies to microstructures, it is shown théferent
stress requires applying tensile or compressiverdettion
and stress difference becomes considerable valuente
plastic strain. Since the fibers can move betwesh @ther in
axial deformation of the microstructure with randdiber
packing, lower stress requires applying plastigistcompared
to microstructure with square fiber-packing patserhe
microstructure with square fiber packing has simpéastic
properties in tension and compression,
microstructures with random fiber-packing patteraguires
more plastic stress in compressive plastic defaonmathan
tensile plastic deformation.
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