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Abstract—The present paper concerns with the influence of fiber 

packing on the transverse plastic properties of metal matrix 
composites.  A micromechanical modeling procedure is used to 
predict the effective mechanical properties of composite materials at 
large tensile and compressive deformations. Microstructure is 
represented by a repeating unit cell (RUC). Two fiber arrays are 
considered including ideal square fiber packing and random fiber 
packing defined by random sequential algorithm. The 
micromechanical modeling procedure is implemented for 
graphite/aluminum metal matrix composite in which the 
reinforcement behaves as elastic, isotropic solids and the matrix is 
modeled as an isotropic elastic-plastic solid following the von Mises 
criterion with isotropic hardening and the Ramberg-Osgood 
relationship between equivalent true stress and logarithmic strain. 
The deformation is increased to a considerable value to evaluate both 
elastic and plastic behaviors of metal matrix composites. The yields 
strength and true elastic-plastic stress are determined for 
graphite/aluminum composites. 
 

Keywords— Fiber packing, metal matrix composites, 
micromechanics, plastic deformation, random 

I. INTRODUCTION 

ETAL matrix composites have found many applications 
as constructional and functional materials in different 

industries.  The presence of reinforcement in metal matrix 
materials improves the properties such as the tensile strength, 
creep resistance, fatigue strength, thermal shock resistance, 
and corrosion resistance. To design a metal matrix composite 
for desired working conditions, a model is required to relate 
the macroscopic response of such heterogeneous materials to 
the arrangement of the reinforcements in the microstructure 
and the properties of constituents and interaction between 
them. The micromechanical model provides an efficient 
procedure to determine properties of composite materials. 

Initially, Adams [1] studied the transverse mechanical 
behavior of a unidirectional continuous fiber-reinforced 
composite with fibers of circular cross section by adopting 
finite element cell models under plane strain conditions. A 
simple geometrical cell composed of matrix and inclusion 
material is repeated by appropriate boundary conditions to 
represent a composite with a periodic microstructure. Good 
agreement was achieved between calculated and experimental 
stress-strain curves for a rectangular fiber arrangement. Sun 
and Chen [2] developed a simple micromechanical model to 
describe the elastic-plastic behavior of fibrous composites. A 
square cross section for fibers and plane strain conditions are 
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assumed to simplify the micromechanical model. Ability to 
predict composite properties from those of the constituents is 
always an attractive idea. However, the micromechanical 
approach is often hindered by simplifying assumptions in 
geometrical representation of microstructures. Experimental 
observations have shown that the fiber strings are distributed 
in the random pattern. Hence, a model is required to analysis 
the large deformation of three-dimensional RUC with random 
fiber packing to determine the effective properties of metal 
matrix composites. 

The present research works determines the influence of 
fiber packing on the plastic properties of metal matrix 
composites. The micromechanical modeling procedure is 
implemented to evaluate the response of unidirectional 
continuous fiber composites subjected to finite axial 
deformation. The microstructure of the metal matrix materials 
is represented by a RUC. Two fiber arrangements are 
considered including ideal square fiber packing and random 
fiber packing defined by random sequential algorithm. RUC 
subjected to tensile and compressive uniaxial deformation to 
determine the effective properties of metal matrix composite 
considering the periodicity conditions on the deformation of 
RUC boundary surfaces. The Volume averaging scheme is 
implemented to apply the local macroscopic deformation 
gradient tensor to the RUC assigned to the microstructure. The 
micromechanical modeling procedure is implemented for 
graphite/aluminum metal matrix composite in which the 
reinforcement behaves as elastic, isotropic solids and the 
matrix was modeled as an isotropic elastic-plastic solid 
following the von Mises criterion with isotropic hardening and 
the Ramberg-Osgood relationship is assumed between 
equivalent true stress and logarithmic strain. RUC is subjected 
to uniaxial large deformation increased to a considerable value 
to evaluate both elastic and plastic behaviors of metal matrix 
composites. The yields strength and true elastic-plastic stress 
are determined for graphite/aluminum composites. 

II.  M ICROSTRUCTURE 

The microstructures of unidirectional fiber reinforced 
composites are commonly described by three fiber 
arrangement including square, hexahedral and random fiber-
packing patterns. The micromechanical results for linear 
anisotropic elastic materials revealed that the calculated axial 
and shear elastic modulus are dependent on the fiber packing 
[3]. Since the microstructures with square and hexahedral 
fiber-packing patterns are idealized geometrical representation 
for fiber arrangement, the microstructure with random fiber 
packing yields more accurate results. At large plastic 
deformation of anisotropic materials, the results highly 
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depends on the fiber packing and for some fiber arrangement, 
the deformation locking may be observed at lower strain. 

Since the heterogeneities are orders of magnitude smaller 
than the total body, the deformation field in the vicinity of one 
inclusion is approximately the same as the deformation field 
near neighboring inclusions [4]. Experimental observations [5-
7] have shown that deformation field in the vicinity of a 
subvolume is approximately the same as deformation field of 
the near neighboring subvolumes. The size of subvolume is 
small enough compared to the total microstructure size so that 
the effective properties computed from the subvolume are 
independent of its size and position within the microstructure. 
Therefore, the microstructure is represented by a periodic unit 
cell that deforms in a repetitive way. The periodic modeling 
can be quite useful, because it provides rigorous estimations 
with a priori prescribed accuracy for various material 
properties [8-10]. 

Microstructure shown in Fig. 1 is considered for the 
unidirectional continuous fiber composites. The circular fibers 
with identical radius are dispersed in the microstructure in a 
random and isotropic manner. It is assumed that the composite 
material has a periodic microstructure which can be obtained 
by translating RUC along three orthogonal axes. The fiber 
distribution in the unit cell is generated using the random 
sequential adsorption algorithm [11] which ensures a random, 
isotropic and homogeneous distribution for the fibers within 
the RUC. The random coordinates in the cross-section of 
microstructure are generated for the center of circular fibers 
with specific diameter, denoted by d. When a fiber intersects 
the boundaries of unit cell, another fiber is generated on the 
neighboring unit cell in order to obtain periodic unit cell. The 
new fiber is added to the microstructure when the distance 
between the centers of a given fiber and the closest fibers 
previously generated is greater than a minimum values (1.1d). 
Such condition prevents overlapping fibers as well as ensuring 
adequate mesh geometry for the matrix material located 
between fibers. To prevent element distortion during mesh 
generation, the fiber surface should not be too close (greater 
than 0.1d) to the boundary surfaces of the RUC. When such 
conditions are satisfied, the fiber is added to the unit cell at the 
generated random coordinates. The procedure is repeated until 
the fiber volume fraction reaches close to a pre-defined value. 
The square cross section is considered for unit cell (b2 = b3) 
and the ratio of fiber diameter to unit cell dimension (d / 2b2) 
is set to 0.05. 

Aluminum alloy reinforced with stiff graphite fibers is 
considered. The fibers behaved as elastic, isotropic solids 
characterized by the elastic modulus Ef = 250 GPa and the 
Poisson's ratio υf = 0.2. The matrix is modeled as an isotropic 
elastic-plastic solid following the von Mises criterion with 
isotropic hardening. The matrix elastic constants are Em = 70 
GPa and υm = 0.33, and the Ramberg-Osgood relationship is 

assumed between equivalent true stress,eq
mσ , and logarithmic 

strain, εm, i.e., 

neq
m

m K

1





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
= σε                                                                     (1) 

Where K = 400 MPa is the strength coefficient and n = 0.1 is 
the matrix strain hardening exponent [12]. Regarding these 
data, an initial yield stress of 225.3 MPa is obtained. The 
aluminum material is reinforced with 0.4 fiber volume 
fraction. 

 
Fig. 1 Microstructure considered for metal matrix composites having 

random fiber packing pattern    

III.  MICROMECHANICAL MODEL 

Micromechanical model provides efficient tool to 
characterize composite materials from known properties of 
their constituents and the distribution of the reinforcement in 
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the microstructure through the analysis of a RUC. The essence 
in micromechanical approach is that the heterogeneous 
structure of the composite is replaced by a homogeneous 
medium with anisotropic properties. 

A Lagrangian viewpoint is used to describe the material 
motion and the components of vectors and tensors are 
described in a fixed rectangular coordinate system. In the 
reference configuration of RUC, the position of a typical 
material particle is expressed with vector X (components Xi). 
In the deformed configuration at instance t, the particle moves 
to a position described with vector x(X,t) (components xi) 
corresponding to the displacement vector u(X,t) (components 
ui). The deformation is typically described using the 
deformation gradient tensor, designated by F, whose 
components are given by; 

j

i
ij X

x
F

∂
∂=  (1) 

  The reference geometry of RUC is assumed to be a 
rectangular prismatic volume whose surfaces are parallel to 
the surfaces defined in a fixed Cartesian coordinate system 
with origin located at the centre of RUC. As shown in Fig. 1, 
the initial dimension of RUC is 2b1�2b2�2b3. The boundary 
surfaces of reference geometry perpendicular to i-axis are 
designated with Si

+ and Si
–  intersecting i-axis at Xi = +bi and Xi 

= –bi, respectively. The displacement of the points located on 
each boundary surface is measured respect to corner points 
labeled as points P0, P1, P2 and P3 in Fig. 1. Such points are 
called reference points. The current position of points located 
on surface Si

– is measured respect to point P0, while the points 
located on S1

+, S2
+ and S3

+ are measured respect to points P1, 
P2 and P3, respectively. To enforce the periodicity constraint, 
the current position of boundary surface is described by [13]:  
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Where ( )
( )j

tix is the components of current position vector of 

corner point Pj. 
To relate the macrostructure deformation to the 

microstructure deformation, it is assumed that the local 
macroscopic deformation gradient tensor at a given point to be 
equal the volume averaged deformation gradient tensor of 
RUC assigned at that point. Using the periodicity constraining 
equations (1), it can be shown [13] that the macroscopic 
deformation gradient tensor is a function of current position of 
corner points P0, P1, P2 and P3 as follows:  
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It should be noted that no summation is considered on j 
superscript in Eq. (3). 

An energy balance is considered to relate stress tensor in the 
macroscopic and microscopic scales. The internal power at 
macroscopic level at a given point is set equal to the internal 

power in RUC assigned at the corresponding point in a given 
deformed configuration. It was shown [13] that the energy 
balance results in 
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Where the dot superscript denotes to the time derivative, Pij 
are the components of nominal stress tensor defined in 
macroscopic levels, tj are the components of traction force and 
si

+ is the deformed geometry of boundary surface Si+. 

IV.  PLASTIC BEHAVIOR OF MMC 

The finite element analysis is used to determine the 
response of RUC subjected to large deformations. Since the 
periodicity constraint enforces that the opposite faces deform 
identically, the geometry of RUC is meshed so that the 
number and distribution of nodes on opposite faces are 
identical. The RUC is meshed by eight-node linear brick 
elements using sweep technique along 1-axis. 

The initial and maximum allowable increment sizes are set 
to 0.001 and 0.025 of total increment size, respectively. The 
increment size is automatically modified based on the 
convergence rate. The small value for initial increment size 
causes that several initial increments concern with elastic 
behavior and prevent the abrupt transition from elastic to 
plastic behaviors. Therefore, the yield strength is calculated 
with reasonable accuracy. 

The numerical procedure is used to determine the effective 
macroscopic mechanical response of metal matrix composite 
in transverse tensile and compressive deformation 
mechanisms.  Two fiber arrangements are considered 
including ideal square fiber packing and random fiber packing. 

A. Tension normal to fiber direction 

The RUC is subjected to a specific axial tensile deformation 
along 2-axis normal to the fiber direction, while the RUC is 
free to deform along two other axes. The displacement of 
reference points is described by Eq. (3), in which the value of 
F22 is increased from a unit value to a specific value, while 
F12, F13, F21, F23, F31 are F32 are set to zero to prevent shear 
deformation. The values of F11 and F33 are calculated in 
micromechanical modeling. Fig. 2 depicts the deformed 
geometry of RUC subjected to F22 = 1.3. Since the 
microstructure is extruded uniformly along fiber direction and 
there is no gradient on geometry, material properties and 
loading conditions, single raw of elements is considered along 
1-axis. As shown in Fig. 2a, the boundary surfaces of RUC 
with square fiber packing pattern remain flat and orthogonal at 
the deformed status. It was verified [14] that the axial 
deformation causes no distortion on the boundary surfaces of 
RUCs having three orthogonal reflectional symmetric planes 
and the initial flat surfaces remain flat without any rotations. 
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(a) 

 
(b) 

Fig. 2 Initial and deformed geometries subjected to tensile axial 
deformation normal to fiber direction in the RUS of 

graphite/aluminum composite having 0.4 fiber volume fraction and 
microstructures with a) square fiber packing b) random fiber packing 
 
 

Fig. 2b shows the deformed geometries for RUC with 
random fiber packing meshed. There is considerable 
displacement in the center of fibers, while negligible 
deformation is observed in fibers because of their high 
stiffness compared to matrix material. The initial boundary flat 
surfaces normal to the 2 and 3 axes are disported in the RUC 
because of non-uniform fiber distribution on the cross section.  
It should be noted that the plane normal to 1-axis remains flat 
in both RUCs due to reflectional symmetric plane.  

Fig. 3 illustrates the equivalent stress in matrix material 
subjected to transverse stretch ratio 1.3 in graphite/aluminum 
composite. As shown in Fig. 3a, The von Mises stress reaches 
to maximum value at the mid-distant between fibers at the 
symmetric planes normal to fiber direction as well as the 
surface in the fiber/matrix interaction. Fig. 3b shows that more 
volume of matrix materials reaches to maximum stress 
between fibers compared to fiber/matrix interface in 
microstructure with random fiber packing pattern. As depicts 
in Fig 3, the more equivalent stress is observed in the 
microstructure with random fiber packing due to local 
severely deformation. 

The nominal stress P22 is calculated using the resultant 
forces applied to boundary surfaces and the stretch ratio, 
namely, 
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Based on deformation gradient and nominal stress tensor, 

the Cauchy stress applied along tension direction is 
determined as, 

3311

22
2222

1
22 FF

P
PFJ == −σ  (6) 

Fig. 4 depicts the variation of calculated Cauchy stress σ22 
as the deformation proceeds for aluminum material and 
graphite/aluminum composites with random and square fiber-
packing patterns. To verify numerical procedure used for 
micromechanical analysis, the properties of fiber material are 
set the same as matrix material in the microstructure with 
random fiber packing pattern and the calculated effective 
properties are compared to net aluminum material. The yield 
strength and stress in elastic and plastic regions correlate well 
with the properties of aluminum materials. The 
micromechanical model evaluates the same yield strength for 
composite for both microstructures. The yield strength of 
metal matrix composite with 0.4 fiber volume fraction has 
little increase respect to net aluminum materials, because some 
regions of matrix material experience plastic deformation at 
low level deformation due to local plastic deformation.  Since 
the matrix material has more freedom to flow between fibers 
in random fiber packing, less stress is required to apply plastic 
deformation compared to microstructure with square fiber 
packing. 
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(a) 

 
(b) 

Fig. 3 Von Mises stress in matrix material subjected to transverse 
stretch ratio 1.3 in graphite/aluminum composite having 0.4 fiber 

volume fraction and microstructure with a) square fiber packing b) 
random fiber packing    

 
Fig. 4 Cauchy stress required to applied elastic-plastic tensile 

transverse deformation to net matrix material and composites with 
different microstructures  

B. Compression normal to fiber direction 

The micromechanical modeling procedure is used to 
determine the elastic-plastic transverse properties of metal 
matrix composites in the compressive loading conditions. The 
RUC is subjected to a specific compressive axial deformation 
along 2-axis normal to the fiber direction, while the RUC is 
free to deform along two other axes. The displacement of 
reference points is described by Eq. (3), in which the value of 
F22 is reduced from unit value up to  0.75, while F12, F13, F21, 
F23, F31 are F32 are set to zero to prevent shear deformation. 
The values of F11 and F33 are calculated in micromechanical 
modeling procedure. 

Fig. 5 depicts the deformed geometry of RUC subjected to 
compressive deformation.  Similar to tensile deformation, the 
boundary surfaces of RUC with square fiber packing pattern 
remain flat, as shown in Fig. 5a. The compression of RUC 
along 2-axis makes a considerable increase in RUC dimension 
along 3-axis normal to fiber direction, while there is negligible 
dimension change of RUC along fiber direction. The high 
stiffness fibers make more severely deformation in matrix 
material when F22 is reduces more than 0.75 and there is high 
distortion in the elements considered for matrix material. 
Therefore, the analysis stops when F22 reaches to 0.75. As 
shown in Fig. 5b, the microstructure with random fiber 
packing has more flexibility because the fiber strings can 
move between each other and F22 is reduced to 0.7. Since the 
fibers are distributed randomly and there is no symmetric 
plane, the boundary surfaces normal to fiber direction are 
distorted from initial flat surfaces.  

Fig. 6 illustrates the variation of compressive Cauchy stress 
as the deformation applies to aluminum material and 
graphite/aluminum composites with random and square fiber-
packing patterns.  There is considerable increase in yield 
strength in metal matrix composites with 0.4 fiber volume 
fraction compared to net matrix material. Both microstructures 
have the same yield strength. Similar to tensile deformation, 
the microstructure with random fiber packing requires lower 
stress to apply plastic deformation compared to microstructure 
with square fiber packing, because fibers in random pattern 
can move between each other and lower stress is observed in 
matrix material located between fibers. As shown in Fig. 6, 
there is considerable stress rise in microstructures with square 
fiber packing as the compressive plastic deformation applies, 
because of fiber distant decrease.  

The logarithmic strain is used to describe the large 
deformation in plastic deformation and It is defined as the 
logarithm of the ratio of current length to initial length. Fig. 7 
shows the graph of true (Catchy) stress-logarithmic strain for 
net matrix material and graphite/aluminum composites with 
microstructures having fiber arrangement in square and 
random packing patterns. The microstructure with square 
fiber-packing patterns has similar plastic properties in tension 
and compression, while the microstructures with random 
fiber-packing patterns require more plastic stress in 
compressive plastic deformation than tensile plastic 
deformation. Table 1 lists the true stress values required to 
apply the same plastic strain in tension and compression. The 
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difference of true stress is a reasonable value for 
microstructures having random fiber-packing patterns.  

 
(a) 

 
(b) 

Fig. 5 Initial and deformed geometries subjected to compressive axial 
deformation normal to fiber direction in the RUC of 

graphite/aluminum composite having 0.4 fiber volume fraction and 
microstructure with a) square fiber packing b) random fiber packing 

 
Fig. 6 Cauchy stress required to applied elastic-plastic compressive 
deformation to net matrix material and composites with different 

microstructures 

 
Fig. 7 True stress – logarithmic plastic strain graph for aluminum 

material and graphite/aluminum composite having 0.4 fiber volume 
fraction and different microstructures 

 

V.  CONCLUSIONS 

The micromechanical technique provides an efficient tool to 
characterize transverse plastic properties of metal matrix 
composites at tensile and compressive large deformations. The 
present procedure is useful to develop or verify the finite 
strain constitutive laws for metal matrix composites based on 
the distribution of the reinforcement in the microstructure and 
the properties of constituents and interaction between them.  
The composite microstructure is described by RUC with two 
fiber distributions including ideal square and random fiber-
packing patterns. Both microstructures predict the same yield 
strength for composite materials. However, as the plastic 
strain applies to microstructures, it is shown that different 
stress requires applying tensile or compressive deformation 
and stress difference becomes considerable value for more 
plastic strain. Since the fibers can move between each other in 
axial deformation of the microstructure with random fiber 
packing, lower stress requires applying plastic strain compared 
to microstructure with square fiber-packing patterns. The 
microstructure with square fiber packing has similar plastic 
properties in tension and compression, while the 
microstructures with random fiber-packing patterns requires 
more plastic stress in compressive plastic deformation than 
tensile plastic deformation. 
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