On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Study on Crater Detection Using FLDA

In this paper, we validate crater detection in moon surface image using FLDA. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) project aiming at the pin-point landing to the moon surface. The point where the lander should land is judged by the position relations of the craters obtained via camera, so the real-time image processing becomes important element. Besides, in the SLIM project, 400kg-class lander is assumed, therefore, high-performance computers for image processing cannot be equipped. We are studying various crater detection methods such as Haar-Like features, LBP, and PCA. And we think these methods are appropriate to the project, however, to identify the unlearned images obtained by actual is insufficient. In this paper, we examine the crater detection using FLDA, and compare with the conventional methods.

An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier

Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.

An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data

The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.

Three-Level Tracking Method for Animating a 3D Humanoid Character

With a rapid growth in 3D graphics technology over the last few years, people are desired to see more flexible reacting motions of a biped in animations. In particular, it is impossible to anticipate all reacting motions of a biped while facing a perturbation. In this paper, we propose a three-level tracking method for animating a 3D humanoid character. First, we take the laws of physics into account to attach physical attributes, such as mass, gravity, friction, collision, contact, and torque, to bones and joints of a character. The next step is to employ PD controller to follow a reference motion as closely as possible. Once the character cannot tolerate a strong perturbation to prevent itself from falling down, we are capable of tracking a desirable falling-down action to avoid any falling condition inaccuracy. From the experimental results, we demonstrate the effectiveness and flexibility of the proposed method in comparison with conventional data-driven approaches.

Implementation of an Improved Secure System Detection for E-passport by using EPC RFID Tags

Current proposals for E-passport or ID-Card is similar to a regular passport with the addition of tiny contactless integrated circuit (computer chip) inserted in the back cover, which will act as a secure storage device of the same data visually displayed on the photo page of the passport. In addition, it will include a digital photograph that will enable biometric comparison, through the use of facial recognition technology at international borders. Moreover, the e-passport will have a new interface, incorporating additional antifraud and security features. However, its problems are reliability, security and privacy. Privacy is a serious issue since there is no encryption between the readers and the E-passport. However, security issues such as authentication, data protection and control techniques cannot be embedded in one process. In this paper, design and prototype implementation of an improved E-passport reader is presented. The passport holder is authenticated online by using GSM network. The GSM network is the main interface between identification center and the e-passport reader. The communication data is protected between server and e-passport reader by using AES to encrypt data for protection will transferring through GSM network. Performance measurements indicate a 19% improvement in encryption cycles versus previously reported results.

The Performance of the Character-Access on the Checking Phase in String Searching Algorithms

A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed; the results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of comparisons are improved up to 74.0%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 28% to 68% by the new CCCA algorithm

Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference

Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.

NOHIS-Tree: High-Dimensional Index Structure for Similarity Search

In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. We also present a study of the influence of clustering on search time. The performance test results show that NOHIS-tree performs better than SR-tree. Tests also show that NOHIS-tree keeps its performances in high dimensional spaces. We include the performance test that try to determine the number of clusters in NOHIS-tree to have the best search time.

Implementation of IEEE 802.15.4 Packet Analyzer

A packet analyzer is a tool for debugging sensor network systems and is convenient for developers. In this paper, we introduce a new packet analyzer based on an embedded system. The proposed packet analyzer is compatible with IEEE 802.15.4, which is suitable for the wireless communication standard for sensor networks, and is available for remote control by adopting a server-client scheme based on the Ethernet interface. To confirm the operations of the packet analyzer, we have developed two types of sensor nodes based on PIC4620 and ATmega128L microprocessors and tested the functions of the proposed packet analyzer by obtaining the packets from the sensor nodes.

Forecasting Enrollment Model Based on First-Order Fuzzy Time Series

This paper proposes a novel improvement of forecasting approach based on using time-invariant fuzzy time series. In contrast to traditional forecasting methods, fuzzy time series can be also applied to problems, in which historical data are linguistic values. It is shown that proposed time-invariant method improves the performance of forecasting process. Further, the effect of using different number of fuzzy sets is tested as well. As with the most of cited papers, historical enrollment of the University of Alabama is used in this study to illustrate the forecasting process. Subsequently, the performance of the proposed method is compared with existing fuzzy time series time-invariant models based on forecasting accuracy. It reveals a certain performance superiority of the proposed method over methods described in the literature.

Speech Data Compression using Vector Quantization

Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table shows computational complexity of these three algorithms. Here we have introduced a new performance parameter Average Fractional Change in Speech Sample (AFCSS). Our FCG algorithm gives far better performance considering mean absolute error, AFCSS and complexity as compared to others.

Feature Based Unsupervised Intrusion Detection

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

An Improved Genetic Algorithm to Solve the Traveling Salesman Problem

The Genetic Algorithm (GA) is one of the most important methods used to solve many combinatorial optimization problems. Therefore, many researchers have tried to improve the GA by using different methods and operations in order to find the optimal solution within reasonable time. This paper proposes an improved GA (IGA), where the new crossover operation, population reformulates operation, multi mutation operation, partial local optimal mutation operation, and rearrangement operation are used to solve the Traveling Salesman Problem. The proposed IGA was then compared with three GAs, which use different crossover operations and mutations. The results of this comparison show that the IGA can achieve better results for the solutions in a faster time.

Dynamic Threshold Adjustment Approach For Neural Networks

The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.

A Comparative Analysis of Fuzzy, Neuro-Fuzzy and Fuzzy-GA Based Approaches for Software Reusability Evaluation

Software Reusability is primary attribute of software quality. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. In this paper, we have devised the framework of metrics that uses McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component as input attributes and calculated reusability of the software component. Here, comparative analysis of the fuzzy, Neuro-fuzzy and Fuzzy-GA approaches is performed to evaluate the reusability of software components and Fuzzy-GA results outperform the other used approaches. The developed reusability model has produced high precision results as expected by the human experts.

Encryption Efficiency Analysis and Security Evaluation of RC6 Block Cipher for Digital Images

This paper investigates the encryption efficiency of RC6 block cipher application to digital images, providing a new mathematical measure for encryption efficiency, which we will call the encryption quality instead of visual inspection, The encryption quality of RC6 block cipher is investigated among its several design parameters such as word size, number of rounds, and secret key length and the optimal choices for the best values of such design parameters are given. Also, the security analysis of RC6 block cipher for digital images is investigated from strict cryptographic viewpoint. The security estimations of RC6 block cipher for digital images against brute-force, statistical, and differential attacks are explored. Experiments are made to test the security of RC6 block cipher for digital images against all aforementioned types of attacks. Experiments and results verify and prove that RC6 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC6 block cipher algorithm. So, RC6 block cipher can be considered to be a real-time secure symmetric encryption for digital images.

Exploiting Self-Adaptive Replication Management on Decentralized Tuple Space

Decentralized Tuple Space (DTS) implements tuple space model among a series of decentralized hosts and provides the logical global shared tuple repository. Replication has been introduced to promote performance problem incurred by remote tuple access. In this paper, we propose a replication approach of DTS allowing replication policies self-adapting. The accesses from users or other nodes are monitored and collected to contribute the decision making. The replication policy may be changed if the better performance is expected. The experiments show that this approach suitably adjusts the replication policies, which brings negligible overhead.