High Performance of Hollow Fiber Supported Liquid Membrane to Separate Silver Ions from Medicinal Wastewater

The separation of silver ions from medicinal wastewater via hollow fiber supported liquid membrane (HFSLM) was examined to promote the performance of this technique. The wastewater consisting of 30mg/L silver ions and 120mg/L ferric ions was used as the feed solution. LIX84I dissolving in kerosene and sodium thiosulfate pentahydrate solution were used as the liquid membrane and stripping solution, respectively. In order to access the highest performance of HFSLM, the optimum condition was investigated via several influential variables. Final concentration of silver ions in feed solution was obtained 0.2mg/L which was lower than the discharge limit of Thailand’s mandatory.

Sorption of Nickel by Hypnea Valentiae: Application of Response Surface Methodology

In this work, sorption of nickel from aqueous solution on hypnea valentiae, red macro algae, was investigated. Batch experiments have been carried out to find the effect of various parameters such as pH, temperature, sorbent dosage, metal concentration and contact time on the sorption of nickel using hypnea valentiae. Response surface methodology (RSM) is employed to optimize the process parameters. Based on the central composite design, quadratic model was developed to correlate the process variables to the response. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the sorption of nickel were found to be: pH – 5.1, temperature – 36.8oC, sorbent dosage – 5.1 g/L, metal concentration – 100 mg/L and contact time – 30 min. At these optimized conditions the maximum removal of nickel was found to be 91.97%. A coefficient of determination R2 value 0.9548 shows the fitness of response surface methodology in this work.

Effect of COD Loading Rate on Hydrogen Production from Alcohol Wastewater

The objective of this study was to investigate hydrogen production from alcohol wastewater by anaerobic sequencing batch reactor (ASBR) under thermophillic operation. The ASBR unit used in this study had a liquid holding volume of 4 L and was operated at 6 cycles per day. The seed sludge taken from an upflow anaerobic sludge blanket unit treating the same wastewater was boiled at 95 °C for 15 min before being fed to the ASBR unit. The ASBR system was operated at different COD loading rates at a thermophillic temperature (55 °C), and controlled pH of 5.5. When the system was operated under optimum conditions (providing maximum hydrogen production performance) at a feed COD of 60 000 mg/l, and a COD loading rate of 68 kg/m3 d, the produced gas contained 43 % H2 content in the produced gas. Moreover, the hydrogen yield and the specific hydrogen production rate (SHPR) were 130 ml H2/g COD removed and 2100 ml H2/l d, respectively.

Extraction of Phenol, o-Cresol, and p-Cresol from Coal Tar: Effect of Temperature and Mixing

Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as phenol, o-cresol, and p-cresol. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research needed to be done that given the optimum conditions for the separation of phenol, o-cresol, and p-cresol from the coal tar by solvent extraction process. The aim of the present work was to study the effect of two kinds of aqueous were used as solvents: methanol and acetone solutions, the effect of temperature (298, 306, and 313K) and mixing (30, 35, and 40rpm) for the separation of phenol, o-cresol, and p-cresol from coal tar by solvent extraction. Results indicated that phenol, o-cresol, and p-cresol in coal tar were selectivity extracted into the solvent phase and these components could be separated by solvent extraction. The aqueous solution of methanol, mass ratio of solvent to feed, Eo/Ro=1, extraction temperature 306K and mixing 35 rpm were the most efficient for extraction of phenol, o-cresol, and p-cresol from coal tar.

Using Submerge Fermentation Method to Production of Extracellular Lipase by Aspergillus niger

In this study, lipase production has been investigated using submerge fermentation by Aspergillus niger in Kilka fish oil as main substrate. The Taguchi method with an L9 orthogonal array design was used to investigate the effect of parameters and their levels on lipase productivity. The optimum conditions for Kilka fish oil concentration, incubation temperature and pH were obtained 3 gr./ml 35°C and 7, respectively. The amount of lipase activity in optimum condition was obtained 4.59IU/ml. By comparing this amount with the amount of productivity in the olive oil medium based on the cost of each medium, it was that using Kilka fish oil is 84% economical. Therefore Kilka fish oil can be used as an economical and suitable substrate in the lipase production and industrial usages.

Optimum Operating Conditions for Direct Oxidation of H2S in a Fluidized Bed Reactor

In this research a mathematical model for direct oxidization of hydrogen sulfide into elemental sulfur in a fluidized bed reactor with external circulation was developed. As the catalyst is deactivated in the fluidized bed, it might be placed in a reduction tank in order to remove sulfur through heating above its dew point. The reactor model demonstrated via MATLAB software. It was shown that variations of H2S conversion as well as; products formed were reasonable in comparison with corresponding results of a fixed bed reactor. Through analyzing results of this model, it became possible to propose the main optimized operating conditions for the process considered. These conditions included; the temperature range of 100-130ºC and utilizing the catalyst as much as possible providing the highest bed density respect to dimensions of bed, economical aspects that the bed ever remained in fluidized mode. A high active and stable catalyst under the optimum conditions exhibited 100% conversion in a fluidized bed reactor.

Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .

[Ti(OC4H9)4/2,5-Dimethoxytetrahydrofuran/ TEA/Ethylene Chlorobromide] as a Novel Homogeneous Catalyst System Effective for the Ethylene Dimerization Reaction

In the present research, the titanium-catalyzed ethylene dimerization and more specifically, the concomitant byproducts and polymer formation have been studied in the presence of 2,5-dimethoxytetrahydrofuran as an electron donor compound in the combination with triethylaluminium (TEA) as activator. Then, we added ethylene chlorobromide as a new efficient promoter to the relevant catalyst system. Finally, the behavior of novel homogeneous [Titanium tetrabutoxide (Ti(OC4H9)4)/2,5-dimethoxytetrahydrofuran/ TEA/ethylene chlorobromide] was investigated in the various operating conditions for the optimum production of 1-butene. In the optimum conditions, a very high ethylene conversion (almost 90.77 %), a relative high selectivity to 1-butene (79.00 %), yield of reaction equal to 71.70 % and a significant productivity (turnover frequency equal to 1370 h-1) were achieved.

Optimization and Kinetic Study of Gaharu Oil Extraction

Gaharu that produced by Aquilaria spp. is classified as one of the most valuable forest products traded internationally as it is very resinous, fragrant and highly valuable heartwood. Gaharu has been widely used in aromatheraphy, medicine, perfume and religious practices. This work aimed to determine the factors affecting solid liquid extraction of gaharu oil using hexane as solvent under experimental condition. The kinetics of extraction was assumed and verified based on a second-order mechanism. The effect of three main factors, which were temperature, reaction time and solvent to solid ratio were investigated to achieve maximum oil yield. The optimum condition were found at temperature 65°C, 9 hours reaction time and solvent to solid ratio of 12:1 with 14.5% oil yield. The kinetics experimental data agrees and well fitted with the second order extraction model. The initial extraction rate (h) was 0.0115 gmL-1min-1; the extraction capacity (Cs) was 1.282gmL-1; the second order extraction constant (k) was 0.007 mLg-1min-1 and coefficient of determination, R2 was 0.945.

Statistical Optimization of Enzymatic Hydrolysis of Potato (Solanum tuberosum) Starch by Immobilized α-amylase

Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of Potato starch powder (of mesh 80/120) into glucose syrup by immobilized (using Sodium arginate) α-amylase using central composite design. The experimental result on enzymatic hydrolysis of Potato starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of Potato starch by α-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p ≤ 0.01). The optimum value of starch concentration, enzyme concentration, temperature, time and were found to be 6% (w/v), 2% (w/v), 40°C and 80min respectively. The maximum glucose yield at optimum condition was 2.34 mg/mL.

Antioxidant Biosensor Using Microbe

The antioxidant compounds are needed for the food, beverages, and pharmaceuticals industry. For this purpose, an appropriate method is required to measure the antioxidant properties in various types of samples. Spectrophotometric method usually used has some weaknesses, including the high price, long sample preparation time, and less sensitivity. Among the alternative methods developed to overcome these weaknesses is antioxidant biosensor based on superoxide dismutase (SOD) enzyme. Therefore, this study was carried out to measure the SOD activity originating from Deinococcus radiodurans and to determine its kinetics properties. Carbon paste electrode modified with ferrocene and immobilized SOD exhibited anode and cathode current peak at potential of +400 and +300mv respectively, in both pure SOD and SOD of D. radiodurans. This indicated that the current generated was from superoxide catalytic dismutation reaction by SOD. Optimum conditions for SOD activity was at pH 9 and temperature of 27.50C for D. radiodurans SOD, and pH 11 and temperature of 200C for pure SOD. Dismutation reaction kinetics of superoxide catalyzed by SOD followed the Lineweaver-Burk kinetics with D. radiodurans SOD KMapp value was smaller than pure SOD. The result showed that D. radiodurans SOD had higher enzyme-substrate affinity and specificity than pure SOD. It concluded that D. radiodurans SOD had a great potential as biological recognition component for antioxidant biosensor.

Hydrogen Production from Alcohol Wastewater by Upflow Anaerobic Sludge Blanket Reactors under Mesophilic Temperature

In this work, biohydrogen production via dark fermentation from alcohol wastewater using upflow anaerobic sludge blanket reactors (UASB) with a working volume of 4 L was investigated to find the optimum conditions for a maximum hydrogen yield. The system was operated at different COD loading rates (23, 31, 46 and 62 kg/m3d) at mesophilic temperature (37 ºC) and pH 5.5. The seed sludge was pretreated before being fed to the UASB system by boiling at 95 ºC for 15 min. When the system was operated under the optimum COD loading rate of 46 kg/m3d, it provided the hydrogen content of 27%, hydrogen yield of 125.1 ml H2/g COD removed and 95.1 ml H2/g COD applied, hydrogen production rate of 18 l/d, specific hydrogen production rate of 1080 ml H2/g MLVSS d and 1430 ml H2/ L d, and COD removal of 24%.

Effect of Oxygen on Biochar Yield and Properties

Air infiltration in mass scale industrial applications of bio char production is inevitable. The presence of oxygen during the carbonization process is detrimental to the production of biochar yield and properties. The experiment was carried out on several wood species in a fixed-bed pyrolyser under various fractions of oxygen ranging from 0% to 11% by varying nitrogen and oxygen composition in the pyrolysing gas mixtures at desired compositions. The bed temperature and holding time were also varied. Process optimization was carried out by Response Surface Methodology (RSM) by employing Central Composite Design (CCD) using Design Expert 6.0 Software. The effect of oxygen ratio and holding time on biochar yield within the range studied were statistically significant. From the analysis result, optimum condition of 15.2% biochar yield of mangrove wood was predicted at pyrolysis temperature of 403 oC, oxygen percentage of 2.3% and holding time of two hours. This prediction agreed well with the experiment finding of 15.1% biochar yield.

Adsorption of Lead(II) and Cadmium(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells

Cashew nut shells were converted into activated carbon powders using KOH activation plus CO2 gasification at 1027 K. The increase both of impregnation ratio and activation time, there was swiftly the development of mesoporous structure with increasing of mesopore volume ratio from 20-28% and 27-45% for activated carbon with ratio of KOH per char equal to 1 and 4, respectively. Activated carbon derived from KOH/char ratio equal to 1 and CO2 gasification time from 20 to 150 minutes were exhibited the BET surface area increasing from 222 to 627 m2.g-1. And those were derived from KOH/char ratio of 4 with activation time from 20 to 150 minutes exhibited high BET surface area from 682 to 1026 m2.g-1. The adsorption of Lead(II) and Cadmium(II) ion was investigated. This adsorbent exhibited excellent adsorption for Lead(II) and Cadmium(II) ion. Maximum adsorption presented at 99.61% at pH 6.5 and 98.87% at optimum conditions. The experimental data was calculated from Freundlich isotherm and Langmuir isotherm model. The maximum capacity of Pb2+ and Cd2+ ions was found to be 28.90 m2.g-1 and 14.29 m2.g-1, respectively.

Optimization for Subcritical Water Extraction of Phenolic Compounds from Rambutan Peels

Rambutan is a tropical fruit which peel possesses antioxidant properties. This work was conducted to optimize extraction conditions of phenolic compounds from rambutan peel. Response surface methodology (RSM) was adopted to optimize subcritical water extraction (SWE) on temperature, extraction time and percent solvent mixture. The results demonstrated that the optimum conditions for SWE were as follows: temperature 160°C, extraction time 20min. and concentration of 50% ethanol. Comparison of the phenolic compounds from the rambutan peels in maceration 6h, soxhlet 4h, and SWE 20min., it indicated that total phenolic content (using Folin-Ciocalteu-s phenol reagent) was 26.42, 70.29, and 172.47mg of tannic acid equivalent (TAE) per g dry rambutan peel, respectively. The comparative study concluded that SWE was a promising technique for phenolic compounds extraction from rambutan peel, due to much more two times of conventional techniques and shorter extraction times.

Experimental and Statistical Study of Nonlinear Effect of Carbon Nanotube on Mechanical Properties of Polypropylene Composites

In this study concept of experimental design is successfully applied for the determination of optimum condition to produce PP/SWCNT (Polypropylene/Single wall carbon nanotube) nanocomposite. Central composite design as one of experimental design techniques is employed for the optimization and statistical determination of the significant factors influencing on the tensile modulus and yield stress as mechanical properties of this nanocomposite. The significant factors are SWCNT weight fraction and acid treatment time for functionalizing the nanoparticles. Optimum conditions are in 0.7 % of SWCNT weight fraction and 210 min as acid treatment time for 1112.75 ± 28 MPa as maximum tensile modulus and in 216 min and 0.65 % as acid treatment time and SWCNT weight fraction respectively for 40.26 ± 0.3 MPa as maximum yield stress. Also after setting new experiments for test these optimum conditions, found excelent agreement with predicted values.

Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol

In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.

Osmotic Dehydration of Beetroot in Salt Solution: Optimization of Parameters through Statistical Experimental Design

Response surface methodology was used for quantitative investigation of water and solids transfer during osmotic dehydration of beetroot in aqueous solution of salt. Effects of temperature (25 – 45oC), processing time (30–150 min), salt concentration (5–25%, w/w) and solution to sample ratio (5:1 – 25:1) on osmotic dehydration of beetroot were estimated. Quadratic regression equations describing the effects of these factors on the water loss and solids gain were developed. It was found that effects of temperature and salt concentrations were more significant on the water loss than the effects of processing time and solution to sample ratio. As for solids gain processing time and salt concentration were the most significant factors. The osmotic dehydration process was optimized for water loss, solute gain, and weight reduction. The optimum conditions were found to be: temperature – 35oC, processing time – 90 min, salt concentration – 14.31% and solution to sample ratio 8.5:1. At these optimum values, water loss, solid gain and weight reduction were found to be 30.86 (g/100 g initial sample), 9.43 (g/100 g initial sample) and 21.43 (g/100 g initial sample) respectively.

Process Parameter Optimization for the Production of Gentamicin using Micromonouspora Echiniospora

The process parameters, temperature, pH and substrate concentration, were optimized for the production of gentamicin using Micromonouspora echinospora. Experiments were carried out according to central composite design in response surface method. The optimum conditions for the maximum production of gentamicin were found to be: temperature – 31.7oC, pH – 6.8 and substrate concentration – 3%. At these optimized conditions the production of gentamicin was found to be – 1040 mg/L. The R2 value of 0.9465 indicates a good fitness of the model.

Biodiesel Production from Palm Oil using Heterogeneous Base Catalyst

In this study, the transesterification of palm oil with methanol for biodiesel production was studied by using CaO–ZnO as a heterogeneous base catalyst prepared by incipient-wetness impregnation (IWI) and co-precipitation (CP) methods. The reaction parameters considered were molar ratio of methanol to oil, amount of catalyst, reaction temperature, and reaction time. The optimum conditions–15:1 molar ratio of methanol to oil, a catalyst amount of 6 wt%, reaction temperature of 60 °C, and reaction time of 8 h–were observed. The effects of Ca loading, calcination temperature, and catalyst preparation on the catalytic performance were studied. The fresh and spent catalysts were characterized by several techniques, including XRD, TPR, and XRF.