Physicochemical and Microbiological Assessment of Source and Stored Domestic Water from Three Local Governments in Ile-Ife, Nigeria

Some of the main problems man contends with are the quantity (source and amount) and quality of water in Nigeria. Scarcity leads to water being obtained from various sources and microbiological contamination of the water may thus occur between the collection point and the point of usage. This study thus aims to assess the general and microbiological quality of domestic water sources and household stored water used within selected areas in Ile-Ife, South-Western part of Nigeria for microbial contaminants.             Physicochemical and microbiological examination were carried out on 45 source and stored water samples collected from well and spring in three different local government areas i.e. Ife east, Ife-south and Ife-north. Physicochemical analysis included pH value, temperature, total dissolved solid, dissolved oxygen and biochemical oxygen demand. Microbiology involved most probable number analysis, total coliform, heterotrophic plate, faecal coliform and streptococcus count. The result of the physicochemical analysis of samples showed anomalies compared to acceptable standards with the pH value of 7.20-8.60 for stored and 6.50-7.80 for source samples. The total dissolved solids (TDS of stored 20-70mg/L, source 352-691mg/L), dissolved oxygen (DO of stored 1.60-9.60mg/L, source 1.60-4.80mg/L), biochemical oxygen demand (BOD stored 0.80-3.60mg/L, source 0.60-5.40mg/L). General microbiological quality indicated that both stored and source samples with the exception of a sample were not within acceptable range as indicated by analysis of the MPN/100ml which ranges between (stored 290-1100mg/L, source 9-1100mg/L). Apart from high counts, most samples did not meet the World Health Organization standard for drinking water with the presence of some pathogenic bacteria and fungi such as Salmonella and Aspergillus spp. To annul these constraints, standard treatment methods should be adopted to make water free from contaminants. This will help identify common and likely water related infection origin within the communities and thus help guide in terms of interventions required to prevent the general populace from such infections.

Microbiological Contamination of Outdoor Air in Marine Durres's Harbour, Albania

Microbial air contamination of the outdoor air in Marine Durres-s Harbour (Durres, Albania) was estimated by sedimentation technique in August-October 2008. The sampling areas were: Ferry Terminal (FT), Fishery Harbor (FH), East Zone (EZ), Fuel Quay (FQ) and Apollonian Beach (AB). The aim of this study was to measure the number of aerobic plate count (mesophilic aerobic bacteria) and fungi (yeasts and molds) in the outdoor air in these areas. The number of colonies that were formed determines the number of cells at the moment in the outdoor air; respectively the number of mesophilic aerobic bacteria and yeasts and molds. The measure of bacteria and fungi used is CFU (Colony Forming Units) per Petri dish. It is said that marine harbours are very polluted areas. The aim of study was the definition of mesophilic aerobic bacteria and yeasts and molds number, and the comparison of microorganisms number in air sampling areas.

Assessment of Maternal and Embryo-Fetal Toxicity of Copper Oxide Fungicide

The excessive use of agricultural pesticides and the resulting contamination of food and beds of rivers have been a recurring problem nowadays. Some of these substances can cause changes in endocrine balance and impair reproductive function of human and animal population. In the present study, we evaluated the possible effects of the fungicide cuprous copper oxide Sandoz® on pregnant Wistar rats. They received a daily oral administration of 103 or 3.103 mg/kg of the fungicide from the 6th to the 15th day of gestation. On day 21 of gestation, the maternal and fetal toxicity parameters and indices were determined. The administration of cuprous oxide (Copper Sandoz) in Wistar rats, the period of organogenesis, revealed no evidence of maternal toxicity or embryo at the studied doses.

Modelling of Energy Consumption in Wheat Production Using Neural Networks “Case Study in Canterbury Province, New Zealand“

An artificial neural network (ANN) approach was used to model the energy consumption of wheat production. This study was conducted over 35,300 hectares of irrigated and dry land wheat fields in Canterbury in the 2007-2008 harvest year.1 In this study several direct and indirect factors have been used to create an artificial neural networks model to predict energy use in wheat production. The final model can predict energy consumption by using farm condition (size of wheat area and number paddocks), farmers- social properties (education), and energy inputs (N and P use, fungicide consumption, seed consumption, and irrigation frequency), it can also predict energy use in Canterbury wheat farms with error margin of ±7% (± 1600 MJ/ha).

Antibacterial and Antifungal Activity Assesment of Nigella Sativa Essential Oils

Antifungal activities of ether and methanolic extracts of volatiles oils of Nigella Sativa seeds were tested against pathogenic bacterias and fungies strains.The volatile oil were found to have significant antifungal and antibacterial activities compare to tetracycline, cefuroxime and ciprofloxacin positive controls.The ether and methanolic esxtracts were compared to each other for antifungal and antibacterial activities and ether extracts showed stonger activity than methanolic one.

Pleurotus Ostreatus for Durability Test of Rubber and Sengon Woods using Indonesian National Standard and Japanese Standard Methods

This study aims to determine the level of resistance of Hevea brasiliensis and Paraserianthes falcataria (synonym: Falcataria molucana) against wood rot fungi Pleurotus ostreatus based on Indonesian standard SNI 01.7207-2006 and Japanese standard JIS K 1571-2004. The variables measured were visual appearance and weight loss percentage of wood based on longitudinal and cross section fiber directions of rubber wood and sengon wood. Measurement of oven dry weight loss of wood samples performed after 12 weeks incubation. Replication performed was 10 times at each treatment combination. The results based on SNI 01.7207-2006, weight loss value of H. brasiliensis and P. falcataria wood with fiber direction longitudinal were 23,12 and 22,25% respectively and cross section were 20,77 and 18,76% respectively, and all were classified to resistance class IV (no resistance). The results based on JIS K 1571-2004, weight loss value of both woods with fiber direction cross section were 10,95 and 14,20% respectively.

Ethanol Production from Sugarcane Bagasse by Means of Enzymes Produced by Solid State Fermentation Method

Nowadays there is a growing interest in biofuel production in most countries because of the increasing concerns about hydrocarbon fuel shortage and global climate changes, also for enhancing agricultural economy and producing local needs for transportation fuel. Ethanol can be produced from biomass by the hydrolysis and sugar fermentation processes. In this study ethanol was produced without using expensive commercial enzymes from sugarcane bagasse. Alkali pretreatment was used to prepare biomass before enzymatic hydrolysis. The comparison between NaOH, KOH and Ca(OH)2 shows NaOH is more effective on bagasse. The required enzymes for biomass hydrolysis were produced from sugarcane solid state fermentation via two fungi: Trichoderma longibrachiatum and Aspergillus niger. The results show that the produced enzyme solution via A. niger has functioned better than T. longibrachiatum. Ethanol was produced by simultaneous saccharification and fermentation (SSF) with crude enzyme solution from T. longibrachiatum and Saccharomyces cerevisiae yeast. To evaluate this procedure, SSF of pretreated bagasse was also done using Celluclast 1.5L by Novozymes. The yield of ethanol production by commercial enzyme and produced enzyme solution via T. longibrachiatum was 81% and 50% respectively.

Evaluation of Antifungal Potential of Cenchrus pennisetiformis for the Management of Macrophomina phaseolina

Macrophomina phaseolina is a devastating soil-borne fungal plant pathogen that causes charcoal rot disease in many economically important crops worldwide. So far, no registered fungicide is available against this plant pathogen. This study was planned to examine the antifungal activity of an allelopathic grass Cenchrus pennisetiformis (Hochst. & Steud.) Wipff. for the management of M. phaseolina isolated from cowpea [Vigna unguiculata (L.) Walp.] plants suffering from charcoal rot disease. Different parts of the plants viz. inflorescence, shoot and root were extracted in methanol. Laboratory bioassays were carried out using different concentrations (0, 0.5, 1.0, …, 3.0 g mL-1) of methanolic extracts of the test allelopathic grass species to assess the antifungal activity against the pathogen. In general, extracts of all parts of the grass exhibited antifungal activity. All the concentrations of methanolic extracts of shoot and root significantly reduced fungal biomass by 20–73% and 40–80%, respectively. Methanolic shoot extract was fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. Different concentrations of these fractions (3.125, 6.25, …, 200 mg mL-1) were analyzed for their antifungal activity. All the concentrations of n-hexane fraction significantly reduced fungal biomass by 15–96% over corresponding control treatments. Higher concentrations (12.5–200 mg mL-1) of chloroform, ethyl acetate and n-butanol also reduced the fungal biomass significantly by 29–100%, 46–100% and 24–100%, respectively.

Identification Characterization and Production of Phytase from Endophytic Fungi

Phytases are acid phosphatase enzymes, which efficiently cleave phosphate moieties from phytic acid, thereby generating myo-inositol and inorganic phosphate. Thirty four isolates of endophytic fungi to produce of phytases were isolated from leaf, stem and root fragments of soybean. Screening of 34 isolates of endophytic fungi identified the phytases produced by Rhizoctonia sp. and Fusarium verticillioides . The phytase production were the best induced by phytic acid and rice bran compared the others inducer in submerged fermentation medium used. The phytase produced by both Rhizoctonia sp. and F. verticillioides have pH optimum at 4.0 and 5.0 respectively. The characterization of phytase from Fusarium verticillioides showed that temperature optimum was 500C and stability until 600C, the pH optimum 5.0 and pH stability was 2.5 – 6.0, and substrate specificity were rice bran>soybean meal>corn> coconut cake, respectively.

Effects of Adding Different Levels of Anaerobic Fungi on Cellulase Activity of Ostrich Digestive Tract-s Microorganisms under in Vitro Condition

the objective of this study is to measure the levels of cellulas activity of ostrich GI microorganisms, and comparing it with the levels of cellulas activity of rumen-s microorganisms, and also to estimate the probability of increasing enzyme activity with injecting different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi. The experiment was conducted in laboratory and under a complete anaerobic condition (in vitro condition). 40 ml of “CaldWell" medium and 1.4g wheat straw were placed in incubator for an hour. The cellulase activity of ostrich microorganisms was compared with other treatments, and then different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi were injected to ostrich microorganism-s media. Due to the results, cattle and goat with 2.13 and 2.08 I.U (international units) respectively showed the highest activity and ostrich with 0.91 (I.U) had the lowest cellulose activity (p < 0.05). Injecting 30% and 50% of anaerobic fungi had no significant incensement in enzyme activity, but with injecting 70% of rumen fungi to ostrich microorganisms culture a significant increase was observed 1.48 I.U. (p < 0.05).

Identification of Anaerobic Microorganisms for Converting Kitchen Waste to Biogas

Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system.

Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Fungal Disinfection by Nanofiltration in Tomato Soilless Culture

Principally, plants grown in soilless culture may be attacked by the same pests and diseases as cultivated traditionally in soil. The most destructive phytopathogens are fungi, such as Phythium, Phytophthora and Fusarium, followed by viruses, bacteria and nematodes. We investigated effect of carbon nanotube filters on disease management of soilless culture. Tomato seedlings transplant in plastic pots filled with a soilless media of vermiculite. The crop irrigated and fertilized using a hydroponic nutrient solution. We used carbon nanotube filters for nutrient solution disinfection. Our results show that carbon nanotube filtration significantly reduces pathogens on tomato plants. Fungal elimination (Fusarium oxysporum and Pythium spp.) was usually successful at about 96 to 99.9% all over the cultural season. It is seem that in tomato soilless culture, nanofiltration constitutes a reliable method that allows control of the development of diseases caused by pathogenic fungi

Stability of New Macromycetes Phytases under Room, Cooling and Freezing Temperatures of Storage

Phytases are enzymes used as an important component in monogastric animals feeds in order to improve phosphorous availability, since it is not readily assimilated by these animals in the form of the phytate presented in plants and grains. As these enzymes are used in industrial activities, they must retain its catalytic activities during a certain storage period. This study presents information about the stability of 4 different phytases, produced by four macromycetes fungi through solid-state fermentation (SSF). There is a lack of data in literature concerning phytase from macromycetes shelf-life in storage conditions at room, cooling and freezing temperatures. The 4 phytases from macromycetes still had enzymatic activities around 100 days of storage at room temperature. At cooling temperature in 146 days of studies, the phytase from G. stipitatum was the most stable with 44% of the initial activity, in U.gds (units per gram of dried fermented substrate). The freezing temperature was the best condition storage for phytases from G. stipitatum and T. versicolor. Each condition provided a study for each mushroom phytase, totalizing 12 studies. The phytases showed to be stable for a long period without the addition of additives.

Biodiversity of Micromycetes Isolated from Soils of Different Agricultures in Kazakhstan and Their Plant Growth Promoting Potential

The comparative analysis of different taxonomic groups of microorganisms isolated from dark chernozem soils under different agricultures (alfalfa, melilot, sainfoin, soybean, rapeseed) at Almaty region of Kazakhstan was conducted. It was shown that the greatest number of micromycetes was typical to the soil planted with alfalfa and canola. Species diversity of micromycetes markedly decreases as it approaches the surface of the root, so that the species composition in the rhizosphere is much more uniform than in the virgin soil. Promising strains of microscopic fungi and yeast with plant growth-promoting activity to agricultures were selected. Among the selected fungi there are representatives of Penicillium bilaiae, Trichoderma koningii, Fusarium equiseti, Aspergillus ustus. The highest rates of growth and development of seedlings of plants observed under the influence of yeasts Aureobasidium pullulans, Rhodotorula mucilaginosa, Metschnikovia pulcherrima. Using molecular - genetic techniques confirmation of the identification results of selected micromycetes was conducted.

The Effects of Four Organic Cropping Sequences on Soil Phosphorous Cycling and Arbuscular Mycorrhizal Fungi

Organic farmers across Saskatchewan face soil phosphorus (P) shortages. Due to the restriction on inputs in organic systems, farmers rely on crop rotation and naturally-occurring arbuscular mycorrhizal fungi (AMF) for plant P supply. Crop rotation is important for disease, pest, and weed management. Crops that are not colonized by AMF (non-mycorrhizal) can decrease colonization of a following crop. An experiment was performed to quantify soil P cycling in four cropping sequences under organic management and determine if mustard (non-mycorrhizal) was delaying the colonization of subsequent wheat. Soils from the four cropping sequences were measured for inorganic soil P (Pi), AMF spore density (SD), phospholipid fatty acid analysis (PLFA, for AMF biomarker counts), and alkaline phosphatase activity (ALPase, related to AMF metabolic activity). Plants were measured for AMF colonization and P content and uptake of above-ground biomass. A lack of difference in AMF activity indicated that mustard was not depressing colonization. Instead, AMF colonization was largely determined by crop type and crop rotation.

Ameliorative Effect of Calocybe indica, a Tropical Indian Edible Mushroom on Hyperglycemia Induced Oxidative Stress

Mushrooms are a group of fleshy macroscopic fungi. They have been valued throughout the world as both edible and medicine. They are highly nutritious with good amount of quality proteins, vitamins and minerals. An edible mushroom, Calocybe indica was selected to validate its nutritional and medicinal properties. Since tissue damage in hyperglycemia has been related to oxidative stress, we evaluated the enzymatic and non-enzymatic antioxidant status in the serum, liver and kidney since they are the target organs in diabetic complications. From the results, increased oxidative stress and decreased antioxidants might be related to the causation of diabetes mellitus. The treatment in the diabetic rats with the Calocybe indica showed an increase in the antioxidant system and decrease in the production of free radicals. The mushrooms which contain antioxidant phytochemicals has potential free radical scavenging capacity and hence can induce the antioxidant system in the body significantly reduces the generated free radicals thereby maintaining the normal levels of the antioxidants

Mycorrhizal Fungi Influence on Physiological Growth Indices in Basil Induced by Phosphorus Fertilizer under Irrigation Deficit Conditions

This experiment was carried out to study the effect of AMF, drought stress and phosphorus on physiological growth indices of basil at Iran using by a split-plot design with three replications. The main-plot factor included: two levels of irrigation regimes (control=no drought stress and irrigation after 80 evaporation= drought stress condition) while the sub-plot factors included phosphorus (0, 35 and 70 kg/ha) and application and non-application of Glomus fasciculatum. The results showed that total dry matter (TDM), life area index (LAI), relative growth rate (RGR) and crop growth rate (CGR) were all highly significantly different among the phosphorus, whereas drought stress had effect of practical significance on TDM, LAI, RGR and CGR. The results also showed that the highest TDM, LAI, RGR and CGR were obtained from application of Glomus fasciculatum under no-drought condition.

Mycoflora of Activated Sludge with MBRs in Berlin, Germany

Thirty six samples from each (aerobic and anoxic) activated sludge were collected from two wastewater treatment plants with MBRs in Berlin, Germany. The samples were prepared for count and definition of fungal isolates; these isolates were purified by conventional techniques and identified by microscopic examination. Sixty tow species belonging to 28 genera were isolated from activated sludge samples under aerobic conditions (28 genera and 58 species) and anoxic conditions (26 genera and 52 species). The obtained data show that, Aspergillus was found at 94.4% followed by Penicillium 61.1 %, Fusarium (61.1 %), Trichoderma (44.4 %) and Geotrichum candidum (41.6 %) species were the most prevalent in all activated sludge samples. The study confirmed that fungi can thrive in activated sludge and sporulation, but isolated in different numbers depending on the effect of aeration system. Some fungal species in our study are saprophytic, and other a pathogenic to plants and animals.

An Example of Post-Harvest Thermotherapy as a Non-Chemical Method of Pathogen Control on Apples of Topaz Cultivar in Storage

Huge losses in apple production are caused by pathogens that cannot be seen shortly after harvest. After-harvest thermotherapy treatments can considerably improve control of storage diseases on apples and become an alternative to chemical pesticides. In the years 2010-2012 carried out research in this area. Apples of 'Topaz' cultivar were harvested at optimal maturity time for long storage and subject to water bath treatment at 45, 50, 52, 55°C for 60, 120, 180 and 240 seconds. The control was untreated fruits. After 12 and 24 weeks and during so called simulated trade turnover the fruits were checked for their condition and the originators of diseases were determined by using the standard phytopathological methods. The most common originator of 'Topaz' apple infection during storage were the fungi of genus Gloeosporium. In this paper it was proven that for effective protection of 'Topaz' apples against diseases, thermotherapy by using water treatments at temperature range of 50-52°C is quite sufficient.