Identification of Anaerobic Microorganisms for Converting Kitchen Waste to Biogas

Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system.

Anaerobic Treatment of Produced Water

An experimental study of anaerobic treatment was performed by hybrid upflow anaerobic sludge blanket (HUASB) reactor to treat produced water (PW) of an onshore crude oil terminal (COD: 1597 mg/L, NH3-N: 14.7 mg/L, phenol: 13.8 mg/L, BOD5: 862 mg/L, sodium: 6240 mg/L and chloride 9530 mg/L). The produced water with high salinity and other toxic substances will inhibit the methanogens performance if there is no adaptation on biomass before anaerobic digestion. COD removal from produced water was investigated at five different dilutions of produced water and tap water (TW) without any nutrient addition and pre-treatment. The dilution ratios were 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW. The reactor was evaluated at mesophilic operating condition (35 ± 2 °C) at 5 days of HRT for 250 days continuous feed. The average COD removals for 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW were found to be approximately 76.1%, 73.8%, 70.3%, 46.3% and 61.82% respectively, with final average effluent COD of 123.7 mg/L, 240 mg/L, 294 mg/L, 589 mg/L and 738 mg/L, respectively.

Adsorption of Copper by using Microwave Incinerated Rice Husk Ash (MIRHA)

Many non-conventional adsorbent have been studied as economic alternative to commercial activated carbon and mostly agricultural waste have been introduced such as rubber leaf powder and hazelnut shell. Microwave Incinerated Rice Husk Ash (MIRHA), produced from the rice husk is one of the low-cost materials that were used as adsorbent of heavy metal. The aim of this research was to study the feasibility of using MIRHA500 and MIRHA800 as adsorbent for the removal of Cu(II) metal ions from aqueous solutions by the batch studies. The adsorption of Cu(II) into MIRHA500 and MIRH800 favors Fruendlich isotherm and imply pseudo – kinetic second order which applied chemisorptions

Nutrients Removal from Municipal Wastewater Treatment Plant Effluent using Eichhornia Crassipes

Water hyacinth has been used in aquatic systems for wastewater purification in many years worldwide. The role of water hyacinth (Eichhornia crassipes) species in polishing nitrate and phosphorus concentration from municipal wastewater treatment plant effluent by phytoremediation method was evaluated. The objective of this project is to determine the removal efficiency of water hyacinth in polishing nitrate and phosphorus, as well as chemical oxygen demand (COD) and ammonia. Water hyacinth is considered as the most efficient aquatic plant used in removing vast range of pollutants such as organic matters, nutrients and heavy metals. Water hyacinth, also referred as macrophytes, were cultivated in the treatment house in a reactor tank of approximately 90(L) x 40(W) x 25(H) in dimension and built with three compartments. Three water hyacinths were placed in each compartments and water sample in each compartment were collected in every two days. The plant observation was conducted by weight measurement, plant uptake and new young shoot development. Water hyacinth effectively removed approximately 49% of COD, 81% of ammonia, 67% of phosphorus and 92% of nitrate. It also showed significant growth rate at starting from day 6 with 0.33 shoot/day and they kept developing up to 0.38 shoot/day at the end of day 24. From the studies conducted, it was proved that water hyacinth is capable of polishing the effluent of municipal wastewater which contains undesirable amount of nitrate and phosphorus concentration.

GIS-based Non-point Sources of Pollution Simulation in Cameron Highlands, Malaysia

Cameron Highlands is a mountainous area subjected to torrential tropical showers. It extracts 5.8 million liters of water per day for drinking supply from its rivers at several intake points. The water quality of rivers in Cameron Highlands, however, has deteriorated significantly due to land clearing for agriculture, excessive usage of pesticides and fertilizers as well as construction activities in rapidly developing urban areas. On the other hand, these pollution sources known as non-point pollution sources are diverse and hard to identify and therefore they are difficult to estimate. Hence, Geographical Information Systems (GIS) was used to provide an extensive approach to evaluate landuse and other mapping characteristics to explain the spatial distribution of non-point sources of contamination in Cameron Highlands. The method to assess pollution sources has been developed by using Cameron Highlands Master Plan (2006-2010) for integrating GIS, databases, as well as pollution loads in the area of study. The results show highest annual runoff is created by forest, 3.56 × 108 m3/yr followed by urban development, 1.46 × 108 m3/yr. Furthermore, urban development causes highest BOD load (1.31 × 106 kgBOD/yr) while agricultural activities and forest contribute the highest annual loads for phosphorus (6.91 × 104 kgP/yr) and nitrogen (2.50 × 105 kgN/yr), respectively. Therefore, best management practices (BMPs) are suggested to be applied to reduce pollution level in the area.

Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.