Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

The aim of this work is to modelize the occlusion of a
person with temporomandibular disorders as an evolutionary equation
and approach its solution by the construction and characterizing
of discrete variational splines. To formulate the problem, certain
boundary conditions have been considered. After showing the
existence and the uniqueness of the solution of such a problem, a
convergence result of a discrete variational evolutionary spline is
shown. A stress analysis of the occlusion of a human jaw with
temporomandibular disorders by finite elements is carried out in
FreeFem++ in order to prove the validity of the presented method.

Authors:



References:
[1] M. L. Rodr´ıguez, Aproximaci´on de curvas y superficies a partir de
problemas de contorno mediante m´etodos variacionales. Aplicaciones.
Tesis Doctoral en Matem´aticas de la Universidad de Granada, 2005.
[2] E. Ohashi and D. A. Paredes, “Factorial analysis of the diagnosis of
temporomandibular disorders criteria’s: Articular evaluation,” Journal
of Dental Research, vol. 81, pp. A458–A458, 2002.
[3] A. Hananel, “Sistema experto difuso para el pron´ostico y diagn´ostico
de des´ordenes temporomandibulares utilizando an´alisis factorial y
elementos finitos,” Revista MACI, vol. 3, pp. 303–306, 2011.
[4] A. Hananel, Sistema Experto Difuso para el Pron´ostico y Diagn´ostico
de Des´ordenes Temporomandibulares utilizando An´alisis Factorial y
Elemento Finito. Tesis de Maestr´ıa en Ciencias con Menci´on en
Matem´atica Aplicada de la Universidad Nacional de Piura, 2011.
[5] T. W. Korioth, D. P. Romilly, and A. G. Hannam, “Three-dimensional
finite element stress analysis of the dentate human mandible,” American
Journal of Physical Anthropology, vol. 88, pp. 69–96, 1992.
[6] M. P. Do Carmo, Geometr´ıa Diferencial de Curvas y Superficies.
Alianza Universidad Textos, 1990.
[7] T. W. Korioth, D. P. Romilly, and A. G. Hannam, “3-D finite element
modelling of human jaw deformation during clenching,” Journal of
Dental Research, vol. 72, p. 195, 1993.
[8] M. Beek, J. Koolstra, L. V. Ruijven, and T. V. Eijden,
“Three–dimensional finite element analysis of the human
temporomandibular joint disc,” Journal of Biomechanics, vol. 33,
pp. 307–316, 2000.
[9] D. Kubein, H. Nagerl, R. Schwestka, K. Thieme, J. Faghanel,
and B. Miehe, “Funtional conditions of the mandible: theory and
physiology,” Annals of anatomy, vol. 181, pp. 27–32, 1999.
[10] T. W. Korioth and A. G. Hannam, “Finite element fe modelling of the
human mandible during unilateral molar clenching,” Journal of Dental
Research, vol. 70, p. 334, 1991.
[11] A. Doubova and F. Guill´en, Un curso de c´alculo num´erico,
interpolaci´on, aproximaci´on, integraci´on y resoluci´on de problemas
diferenciales. Universidad de Sevilla–Departamento de ecuaciones
diferenciales y an´alisis num´erico, 2007.
[12] P. A. Raviart and J. M. Thomas, Introduction `a l’Analyse Num´erique
des ´equations aux D´eriv´ees Partielles. Masson, 1983.
[13] O. Chau and V. V. Motreanu, “Dynamic contact problems with velocity
conditions,” International Journal of applied mathematics and computer
science, vol. 12, no. 1, pp. 17–26, 2002.
[14] W. V. Chaves, Mec´anica del medio continuo. Conceptos b´asicos. Centro
Internacional de M´etodos Num´ericos en Ingenier´ıa, 2010.
[15] T. W. Korioth and A. G. Hannam, “Deformation of the human mandible
during simulated tooth clenching,” Journal of Dental Research, vol. 73,
pp. 56–66, 1994.
[16] M. Koseki, N. Inou, and K. Maki, “Estimation of masticatory forces for
patient-specific analysis of the human mandible,” Transactions of the
Japan Society of Mechanical Engineers Series C, vol. 74, no. 743, pp.
1857–1864, 2008.
[17] D. Dragulescu, D. Stanciu, and M. Toth-Tascau, “Modeling and dynamic
study of human mandible,” Seria Mecanica-Transaccions on Mechanics,
vol. 47, no. 61, pp. 49–54, 2002.
[18] M. C. L´opez de Silanes and R. Arcang´eli, “Sur la convergence des
Dm-splines d’ajustement pour des donn´ees exactes ou bruit´ees,” Revista
Matem´atica de la Universidad Complutense de Madrid, vol. 4, no. 2–3,
pp. 279–284, 1991.
[19] J. Farah, R. Craig, and K. Meroueh, “Finite element analysis of a
mandibular model,” Journal of Oral Rehabilitation, vol. 15, pp. 615–624,
1998.
[20] A. Kouibia, Aproximaci´on de curvas y superficies param´etricas mediante
splines variacionales. Tesis Doctoral de la Universidad de Granada,
1999.
[21] P. M. Prenter, Splines and Variational Methods. A Wiley–Interscience
Publication, 1989.
[22] J. Viao, M. Burguera, J. Fern´andez, A. Rodr´ıguez, M. Campo, D. Su´arez,
T. Abeleira, and M. Gallas, “Simulaci´on num´erica en odontolog´ıa y
ortodoncia,” Bolet´ın SeMA, vol. 33, pp. 113–147, 2005.
[23] A. P´erez, J. Cegoino, J. L´opez, J. D. Vicente, and
M. Doblar´e, “Simulaci´on por elementos finitos de la articulaci´on
temporomandibular,” Biomec´anica, vol. 11, pp. 10–22, 2003.
[24] T. W. Korioth, P. C. Dechow, and A. G. Hannam, “3-D finite element
modelling and validation of a dentate human mandible,” Journal of
Dental Research, vol. 71, p. 203, 1992.
[25] J. Gal, L. Gallo, G. Murray, I. Klineberg, C. Johnson, and S. Palla,
“Screw axes and wrenches in the study of human jaw mechanics,”
Critical reviews in oral biology and Medicine, vol. 13, no. 4, pp.
366–376, 2002.
[26] T. W. Korioth, Finite element modelling of human mandibular
biomechanics. The University of British Columbia, 1992.
[27] Y. Zhang, M. Wang, and W. Ling, “Influence of teeth contact alternation
to TMJ stress distribution. Three-dimensional finite element study,”
World Journal of Modelling and Simulation, pp. 60–64, 2005.
[28] K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional
Analysis Framework. Nueva York: Springer–Verlag, 2001.