Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

The article presents the results of the application of
artificial neural networks to separate the fluorescent contribution of
nanodiamonds used as biomarkers, adsorbents and carriers of drugs
in biomedicine, from a fluorescent background of own biological
fluorophores. The principal possibility of solving this problem is
shown. Use of neural network architecture let to detect fluorescence
of nanodiamonds against the background autofluorescence of egg
white with high accuracy - better than 3 ug/ml.





References:
[1] M. Zellweger, Fluorescence spectroscopy of exogenous, exogenouslyinduced
and endogenous fluorofores for the photodetection and
photodynamic therapy of cancer. Lausanne, USA, 2000, pp. 117-122.
[2] D. Evanko, "The new fluorescent probes on the block,” Nat Methods,
vol. 5, pp. 218-219, 2008.
[3] A.P. Demchenko, Introduction to Fluorescence Sensing, Springer
Science + Business Media B.V., 2009.
[4] L.M. Wysocki, L.D. Lavis, "Advances in the chemistry of small
molecule fluorescent probes” Current Opinion in Chemical Biology, vol.
15(6), pp. 752—759, 2011.
[5] V.A. Oleynikov, A.V. Sukhanova, I.R. Nabiev, "Fluorescent
semiconductor nanocrystals in biology and medicine,” Russian
Nanotechnology, vol. 2 (1-2), pp. 160-173, 2007.
[6] V. Biju, T. Itoh, A. Anas, A. Sujith, & M. Ishikawa, "Semiconductor
quantum dots and metal nanoparticles: syntheses, optical properties, and
biological applications,” Anal Bioanal Chem, vol. 391, pp.2469-2495,
2008.
[7] D.Ho (ed.). Nanodiamonds, applications in biology and nanoscale
medicine, New York, 2009
[8] Y.Y. Hui, C.L. Cheng, H.C. Chang, "Nanodiamonds for optical
bioimaging,” J Phys D Appl Phys, vol. 43, pp.374021-374031, 2010.
[9] A. M. Schrand, S. A. Ciftan Hens O. A. Shenderova, "Nanodiamond
particles: properties and perspectives for bioapplications,” Critical
Reviews in Solid State and Materials Sciences, vol. 34, pp.18–74, 2009.
[10] A.M. Schrand, H.J. Huang, C. Carlson, J.J. Schlager, E. Osawa, S.M.
Hussain, L.M. Dai, "Are diamond nanoparticles cytotoxic” J. Phys.
Chem. B, vol. 111, pp.2–7, 2007.
[11] C.C. Fu, H.Y. Lee, K. Chen, T.S. Lim, H.Y. Wu, P.K. Lin, P.K. Wei,
P.H. Tsao, H.C. Chang, W. Fann, "Characterization and application of
single fluorescent nanodiamonds as cellular biomarkers,” PNAS,
vol.104(3), pp.727-732, 2007.
[12] T.A.Dolenko, S.A.Burikov, K.A.Laptinskiy, T.V.Laptinskaya,
J.M.Rosenholm, A.A. Shiryaev, A.R.Sabirov, I.I.Vlasov, "Study of
adsorption properties of functionalized nanodiamonds in aqueous
solutions of metal salts using optical spectroscopy,” J. of Alloys and
Compounds, vol.586, pp.S436-S439, 2014.
[13] T.A.Dolenko, S.A.Burikov, J.M.Rosenholm, O.A.Shenderova,
I.I.Vlasov, "Diamond-water coupling effects in Raman and
Photoluminescence of nanodiamond colloidal suspensions,” J. Phys.
Chem. С, vol.116, pp.24314-24319, 2012.
[14] S.C. Hens, W. Lawrence, A.S. Kumbhar, O. Shenderova,
"Photoluminescent nanostructures from graphite oxidation,” J. of Phys.
Chem. C, vol.116, pp. 20015-20022, 2012.
[15] P.G. Luo, S. Sahu, S.T. Yang, S.K. Sonkar, J. Wang, H. Wang, G. E.
LeCroy, L. Cao, Y.P. Sun, "Carbon "quantum” dots for optical
bioimaging,” J. Mater. Chem. B, vol.1, pp. 2116-2127, 2013.
[16] L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A.
Harruff, L.M. Veca, D. Murray, S.Y. Xie, Y.P. Sun, "Carbon Dots for
Multiphoton Bioimaging,” J. Am. Chem. Soc., vol. 129, pp. 11318-
11319, 2007.
[17] O. Shenderova, S. Hens, I. Vlasov, S. Turner, Y.G. Lu, G.V. Tendeloo,
A. Schrand, S. Burikov, T. Dolenko. "Carbon dot - decorated
nanodiamonds,” Particle&Particle Systems Characterization, vol. 31(5),
pp.580-590, 2014.
[18] M. O. Oyewumi, K.G. Rice, in: R.B. Gupta, U.B. Kompella (Eds.),
Nanoparticle Technology for Drug Delivery, New York, USA, 2006,
p.361-379
[19] J.M. Rosenholm, C. Sahlgren, and M. Linden, "Towards
multifunctional, targeted drug delivery systems using mesoporous silica
nanoparticles – opportunities & challenges,” Nanoscale, vol.2, pp.1870–
1883, 2010.
[20] E. Haartman, H. Jiang, A.A. Khomich, J. Zhang, S.A. Burikov, T.A.
Dolenko, J. Ruokolainen, H. Gu, O.A. Shenderova, I.I. Vlasov, J.M.
Rosenholm, "Core-shell designs of photoluminescent nanodiamonds
with porous silica coatings for bioimaging and drug delivery I:
Fabrication,” J. of Materials Chemistry B, vol.1(18), pp.2358-2366,
2013.
[21] N. Prabhakar, T. Nareoja, E. Haartman, D.S. Karaman, H. Jiang, S.
Koho, T.A. Dolenko, P. Hanninen, D.I. Vlasov, V.G. Ralchenko, S.
Hosomi, I.I. Vlasov, C. Sahlgren, J.M. Rosenholm, "Core-shell designs
of photoluminescent nanodiamonds with porous silica coatings for
bioimaging and drug delivery II: Application,” Nanoscale, vol.5(9),
pp.3713-3722, 2013.
[22] C. Cremer, T. Cremer, "Considerations on a laser-scanning microscope
with high resolution and depth of field,” Microsc. Acta., vol. 81(1),
pp.31–44, 1978.
[23] A.V. Feofanov "Spectral laser scanning confocal microscopy in
biological research,” Uspekhi Biologicheskikh Nauk, vol. 47, pp.371-
410, 2007.
[24] L.W. Zhang, N.A. Monteiro-Riviere, "Use of confocal microscopy for
nanoparticle drug delivery through skin,” Journal of Biomedical Optics,
vol. 18(6), pp. 061214.1-061214.5, 2013.
[25] S. Klein, S. Petersen, U. Taylor, D. Rath, S. Barcikowski,
"Quantification of colloidal and intracellular gold nanomarkers down to the single particle level using confocal microscopy,” Proc. of SPIE, vol.
7573, pp. 75730L-1, 2010.
[26] D.O. Lapotko, E.Y. Lukianova, S.A. Chizhik, "Methods for monitoring
and imaging nanoparticles in cells,” Proc. of SPIE, vol. 6447, pp.
644703-1, 2007.
[27] X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, G. Hüttmann,
"Imaging of cancer cells by multiphoton microscopy using gold
nanoparticles and fluorescent dyes,” Journal of Biomedical Optics,
vol.13(3), pp. 031217, 2008.
[28] S. Kantelhardt, J. Leppert, N. Petkus, G. Hüttmann, V. Rohde, and A.
Giese, "Multiphoton microscopy and fluorescence lifetime imaging of
brain and brain tumor tissue,” J. Neuro-Oncol., vol. 8(4), pp. 494–494,
2006.
[29] A.C. Curry, M. Crow, A. Wax, "Molecular imaging of epidermal growth
factor receptor in live cells with refractive index sensitivity using darkfield
microspectroscopy and immunotargeted nanoparticles,” Journal of
Biomedical Optics, vol.13(1), pp.014022, 2008.
[30] F. Verpillat, F. Joud, P. Desbiolles, M. Gross, "Dark-field digital
holographic microscopy for 3D-tracking of gold nanoparticles,” Opt
Express, vol. 19(27), pp.26044-26055, 2011.
[31] M.H. Hassoun, Fundamentals of Artificial Neural Networks.
Massachusetts, USA, 1995.
[32] E. Keedwell, Intelligent Bioinformatics: The Application of Artificial
Intelligence Techniques to Bioinformatics Problems. Wiley, 2005.
[33] Zagoruiko N.G, Applied methods of analysis of data and knowledge.
Novosibirsk, Russia, 1999 (in Russian).
[34] A.N. Gorban’, V.L. Dunin-Barkovskiy et al. Neiroinformatics. Part 4.
Terekhov S.A. Neural network based information models of complex
engineering systems. Novosibirsk, Russia, 1998 (in Russian).
[35] M. Li, B. Verma, X. Fan, K. Tickle, "RBF neural networks for solving
the inverse problem of backscattering spectra,” Neural Computing &
Applications, vol.17(4), pp.391-397, 2008.
[36] H. Yang, M. Xu, "Solving inverse bimodular problems via artificial
neural network,” Inverse Problems in Science and Engineering,
pp.1741-5977, 2009.
[37] Y.I. Neimark, Z.S. Batalova et al., Pattern recognition and medical
diagnostics. Moscow, Russia, 1972 (in Russian).
[38] A. Ya. Chervonenkis. "Application of methods of pattern recognition in
the problems of molecular biology,” Problemy upravleniya, vol. 4, pp.
41–46, 2005.
[39] T. Dramiґcanin, I. Zekoviґc, B. Dimitrijeviґc, S. Ribar, M.D.
Dramiґcanin, "Optical biopsy method for breast cancer diagnosis based
on artificial neural network classification of fluorescence landscape
data,” Acta Phys. Pol. A, vol. 116, pp. 690–2, 2009.
[40] L. Lenhardt, I. Zekoviґc, T. Dramiґcanin, and M. D. Dramiґcanin.
"Artificial neural networks for processing fluorescence spectroscopy
data in skin cancer diagnostics,” Physica Scripta, vol.T157, pp. 014057
(4pp), 2013.
[41] I.V. Gerdova, S.A. Dolenko, T.A. Dolenko, I.V. Churina, V.V. Fadeev,
"New opportunity solutions to inverse problems in laser spectroscopy
involving artificial neural networks,” Izvestiya Akademii Nauk Seriya
Fizicheskaya, vol. 66(8), pp. 1116-1124, 2002.
[42] S. Dolenko, T. Dolenko, S. Burikov, V. Fadeev, A. Sabirov, I.
Persiantsev, "Comparison of input data compression methods in neural
network solution of inverse problem in laser Raman spectroscopy of
natural waters,” In: A.E.P. Villa et al. (Eds.): ICANN 2012, Part II.
Lecture Notes in Computer Science, vol.7553, pp.443-450, 2012.
[43] S. Haykin Neural Networks. A Comprehensive Foundation. Prentice
Hall International, 1999.
[44] http://www.neuroproject.ru/aboutproduct.php?info=ns2info